Skip to main content
Log in

Nonlinear frequency response analysis for the diagnosis of carbon monoxide poisoning in PEM fuel cell anodes

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Anodic CO poisoning of a PEMFC was analysed by nonlinear frequency response analysis (NFRA) in a differential H2/H2 cell. This special experimental setup excluded potential masking effects, emphasised the main mechanism of CO poisoning and made a simplified modelling approach possible. The main features of CO poisoning were investigated by means of steady state polarisation, EIS and NFRA. The main characteristics of CO poisoning in the NFRA spectra can be used as a “fingerprint” for diagnostic purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

\( a_{{{\text{H}}_{{\text{2}}} {\text{O}}}}\) :

Activity of water, [0 … 1]

A :

Amplitude, A m−2

b c/h :

Tafel slope of CO or hydrogen electrooxidation, V

b fc/fh :

Ratio of desorption to adsorption rate constant for CO or hydrogen, [0 … 1]

C DL,A/C :

Anodic or cathodic double layer capacity, F \({\text m}^{-2}_{\text {act}}\)

d M :

Thickness of the membrane, m

F :

Faraday constant, 96485.3 A s mol−1

k ec/eh :

Rate constant of CO or hydrogen electrooxidation, mol \({\text m}^{-2}_{\text {act}}\) s−1

k fc/fh :

Rate constant of CO or hydrogen adsorption, mol \({\text m}^{-2}_{\text {act}}\) s−1

i :

Current density, A m−2

p :

Number of affected sites for Temkin adsorption

p A :

Pressure at the anode, Pa

r ads/des/oxCO/H :

Rates of CO or hydrogen adsorption, desorption or oxidation, mol \({\text m}^{-2}_{\text {act}}\) s−1

R M :

Membrane resistance, \(\Upomega\, \hbox{m}^{-2}_{geom}\)

U cell :

Cell voltage, V

x CO/H :

Mole fraction of CO or hydrogen, [0… 1]

\( \delta(\Updelta G_{\text{CO}}) \) :

Variation of adsorption free energy between \(\Uptheta_{\text{CO}}=0\) and \(\Uptheta_{\text{CO}}=1, \hbox{J mol}^{-1}\)

\( \delta(\Updelta E_H) \) :

Change in activation energy for hydrogen dissociative adsorption near CO occupied site, J mol−1

\( \epsilon \) :

Roughness factor, \({\text m}^{2}_{\text {act}}\,{\text m}^{-2}_{\text {geom}}\)

ηA/C :

Anode or cathode overpotential, V

\( \Uptheta_{\text{CO/H}} \) :

Coverage of catalyst with CO or hydrogen, [0 … 1]

\( \Uptheta_{\text{Pt}} \) :

Free active Pt catalyst sites, [0 … 1]

κ:

Conductivity of the membrane, S m−1

ρ:

Molar area density of active sites, mol \({\text m}^{-2}_{\text {act}}\)

0:

Reference conditions

A :

Anode

act :

Active area

C :

Cathode

CO:

Carbon monoxide

eh :

Electrooxidation of hydrogen

ec :

Electrooxidation of carbon monoxide

fh :

Adsorption of hydrogen

fc :

Adsorption of carbon monoxide

geom :

Geometric area

H:

Hydrogen

H2O:

Water

Pt:

Platinum

ads :

Adsorption

des :

Desorption

ox :

Oxidation

red :

Reduction

References

  1. Bessarab Y, Merfert I, Fischer W, Lindemann A (2008) Different control methods of bidirectional DC–DC converters for fuel cell power systems. In: PCIM Europe 2008. International exhibition and conference for power electronics intelligent motion power quality. Mesago PCIM GmbH, Stuttgart, Germany, p 5

  2. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

  3. Barsoukov E, MacDonald JR (2005) Impedance spectroscopy: theory, experiment, and applications, 2nd edn. John Wiley and Sons, New York

    Book  Google Scholar 

  4. Orazem ME, Tribollet B (2008) Electrochemical impedance spectroscopy. The electrochemical society series, vol 48. Wiley-Interscience, New York

    Book  Google Scholar 

  5. Yuan XZ, Song C, Wang H, Zhang J (2009) Electrochemical impedance spectroscopy in PEM fuel cells: fundamentals and applications. Springer, New York

    Google Scholar 

  6. Fouquet N, Doulet C, Nouillant C, Dauphin-Tanguy G, Ould-Bouamama B (2006) Model based PEM fuel cell state-of-health monitoring via AC impedance measurements. J Power Sources 159(2):905–913

    Article  CAS  Google Scholar 

  7. Le Canut JM, Abouatallah RM, Harrington DA (2006) Detection of membrane drying, fuel cell flooding, and anode catalyst poisoning on PEMFC stacks by electrochemical impedance spectroscopy. J Electrochem Soc 153(5):A857–A864

    Article  CAS  Google Scholar 

  8. Merida W, Harrington DA, Le Canut JM, McLean G (2006) Characterisation of proton exchange membrane fuel cell (PEMFC) failures via electrochemical impedance spectroscopy. J Power Sources 161(1):264–274

    Article  CAS  Google Scholar 

  9. Kadyk T, Hanke-Rauschenbach R, Sundmacher K (2009) Nonlinear frequency response analysis of PEM fuel cells for diagnosis of dehydration, flooding and CO-poisoning. J Electroanal Chem 630:19–27

    Article  CAS  Google Scholar 

  10. Engblom SO, Myland JC, Oldham KB (2000) Must AC voltammetry employ small signals? J Electroanal Chem 480(1–2):120–132

    Article  CAS  Google Scholar 

  11. Gavaghan DJ, Bond AM (2000) A complete numerical simulation of the techniques of alternating current linear sweep and cyclic voltammetry: analysis of a reversible process by conventional and fast fourier transform methods. J Electroanal Chem 480(1–2):133–149

    Article  CAS  Google Scholar 

  12. Smith DE (1966) Electroanalytical chemistry: a series of advances. Marcel Dekker, New York

    Google Scholar 

  13. Jankowski J (2002) Electrochemical methods for corrosion rate determination under cathodic polarisation conditions—a review part 2: AC methods. Corros Rev 20(3):179–200

    Article  CAS  Google Scholar 

  14. Darowicki K, Majewska J (1999) Harmonic analysis of electrochemical and corrosion systems—a review. Corros Rev 17(5–6):383–399

    Article  CAS  Google Scholar 

  15. Groysman A (2009) Corrosion monitoring. Corros Rev 27(4–5):205–343

    Article  CAS  Google Scholar 

  16. Mao Q, Krewer U, Hanke-Rauschenbach R (2010) Total harmonic distortion analysis for direct methanol fuel cell anode. Electrochem Commun 12:1517–1519

    Article  CAS  Google Scholar 

  17. Mao Q, Krewer U, Hanke-Rauschenbach R (2011) Comparative studies on linear and nonlinear frequency response for direct methanol fuel cell anode. Submitted to J Electrochem Soc

  18. Bensmann B, Petkovska M, Vidaković-Koch T, Hanke-Rauschenbach R, Sundmacher K (2010) Nonlinear frequency response of electrochemical methanol oxidation kinetics: a theoretical analysis. J Electrochem Soc 157(9):B1279–B1289

    Article  CAS  Google Scholar 

  19. Darowicki K (1994) Fundamental-harmonic impedance of 1st-order electrode-reactions. Electrochim Acta 39(18):2757–2762

    Article  CAS  Google Scholar 

  20. Darowicki K (1995) Corrosion rate measurements by nonlinear electrochemical impedance spectroscopy. Corros Sci 37(6):913–925

    Article  CAS  Google Scholar 

  21. Darowicki K (1995) The amplitude analysis of impedance spectra. Electrochim Acta 40(4):439–445

    Article  CAS  Google Scholar 

  22. Wilson JR, Schwartz DT, Adler SB (2006) Nonlinear electrochemical impedance spectroscopy for solid oxide fuel cell cathode materials. Electrochim Acta 51(8–9):1389–1402

    Article  CAS  Google Scholar 

  23. Wilson JR, Sase M, Kawada T, Adler SB (2007) Measurement of oxygen exchange kinetics on thin-film La0.6Sr0.4CoO3-delta using nonlinear electrochemical impedance spectroscopy. Electrochem Solid State Lett 10(5):B81–B86

    Article  CAS  Google Scholar 

  24. Weiner DD, Spina JF (1980) Sinusoidal analysis and modeling of weakly nonlinear circuits. Van Nostrand Reinhold Company, New York

    Google Scholar 

  25. Petkovska M (2006) Nonlinear frequency response method for investigation of equilibria and kinetics of adsorption systems. In: Spasic AM, Hsu J-P (eds) Finely dispersed particles—micro-, nano-, and atto-engineering, chap. 12. CRC Press, Boca Raton, pp 283–328

  26. Petkovska M, Do DD (2000) Use of higher-order frequency response functions for identification of nonlinear adsorption kinetics: single mechanisms under isothermal conditions. Nonlinear Dyn 21(4):353–376

    Article  Google Scholar 

  27. Wagner N, Schnurnberger W, Müller B, Lang M (1998) Electrochemical impedance spectra of solid-oxide fuel cells and polymer membrane fuel cells. Electrochim Acta 43(24):3785–3793

    Article  CAS  Google Scholar 

  28. Ciureanu M, Wang H (1999) Electrochemical impedance study of electrode-membrane assemblies in PEM fuel cells I. Electro-oxidation of H2 and H2/CO mixtures on Pt-based gas-diffusion electrodes. J Electrochem Soc 146(11):4031–4040

    Article  CAS  Google Scholar 

  29. Himanen O, Hottinen T, Mikkola M, Saarinen V (2006) Characterization of membrane electrode assembly with hydrogen–hydrogen cell and AC-impedance spectroscopy part I: Experimental. Electrochim Acta 52(1):206–214

    Article  CAS  Google Scholar 

  30. Schneider IA, von Dahlen S, Wokaun A, Scherer GG (2010) A segmented microstructured flow field approach for submillimeter resolved local current measurement in channel and land areas of a PEFC. J Electrochem Soc 157(3):B338–B341

    Article  CAS  Google Scholar 

  31. Springer TE, Rockward T, Zawodzinski TA, Gottesfeld S (2001) Model for polymer electrolyte fuel cell operation on reformate feed-effects of CO, H2 dilution, and high fuel utilization. J Electrochem Soc 148(1):A11–A23

    Article  CAS  Google Scholar 

  32. Springer TE, Zawodzinski TA, Gottesfeld S (1997) Modelling of polymer electrolyte fuel cell performance with reformate feed streams: effects of low levels of CO in hydrogen. In: McBreen J, Muckerjee S, Srinivasan S (eds) Electrode materials and processes for energy conversion and storage. The electrochemical society proceedings, vol 97. The Electrochemical Society, Pennington, pp 15–24

  33. Lee SJ, Mukerjee S, Ticianelli EA, McBreen J (1999) Electrocatalysis of CO tolerance in hydrogen oxidation reaction in PEM fuel cells. Electrochim Acta 44(19):3283–3293

    Article  CAS  Google Scholar 

  34. Camara GA, Ticianelli EA, Mukerjee S, Lee SJ, McBreen J (2002) The CO poisoning mechanism of the hydrogen oxidation reaction in proton exchange membrane fuel cells. J Electrochem Soc 149(6):A748–A753

    Article  CAS  Google Scholar 

  35. Lopes PP, Ticianelli EA (2010) The CO tolerance pathways on the Pt-Ru electrocatalytic system. J Electroanal Chem 644(2):110–116

    Article  CAS  Google Scholar 

  36. Kim JD, Park YI, Kobayashi K, Nagai M, Kunimatsu M (2001) Characterization of CO tolerance of PEMFC by AC impedance spectroscopy. Solid State Ion 140(3-4):313–325

    Article  CAS  Google Scholar 

  37. Kim JD, Park YI, Kobayashi K, Nagai M (2001) Effect of CO gas and anode-metal loading on H2 oxidation in proton exchange membrane fuel cell. J Power Sources 103(1):127–133

    Article  CAS  Google Scholar 

  38. Wagner N, Schulze M (2003) Change of electrochemical impedance spectra during CO poisoning of the Pt and Pt-Ru anodes in a membrane fuel cell (PEFC). Electrochim Acta 48(25–26):3899–3907

    Article  CAS  Google Scholar 

  39. Wagner N, Gülzow E (2004) Change of electrochemical impedance spectra (EIS) with time during CO-poisoning of the Pt-anode in a membrane fuel cell. J Power Sources 127(1–2):341–347

    Article  CAS  Google Scholar 

  40. Ciureanu M, Wang H (2000) Electrochemical impedance study of anode CO-poisoning in PEM fuel cells. J New Mater Electrochem Syst 3(2):107–119

    CAS  Google Scholar 

  41. Ciureanu M, Wang H, Qi ZG (1999) Electrochemical impedance study of membrane-electrode assemblies in PEM fuel cells: II. Electrooxidation of H2 and H2/CO mixtures on Pt/Ru-based gas-diffusion electrodes. J Phys Chem B 103(44):9645–9657

    Article  CAS  Google Scholar 

  42. Yang C, Srinivasan S, Bocarsly AB, Tulyani S, Benziger JB (2004) A comparison of physical properties and fuel cell performance of Nafion and Zirconium Phosphate/Nafion composite membranes. J Membr Sci 237(1–2):145–161

    Article  CAS  Google Scholar 

  43. Baschuk JJ, Li XG (2003) Modelling CO poisoning and O2 bleeding in a PEM fuel cell anode. Int J Energy Res 27(12):1095–1116

    Article  CAS  Google Scholar 

  44. Adamson AW (1967) Physical chemistry of surfaces. Interscience, New York

    Google Scholar 

  45. Dhar HP, Christner LG, Kush AK (1987) Nature of CO adsorption during H2 oxidation in relation to modelling for CO poisoning of a fuel-cell anode. J Electrochem Soc 134(12):3021–3026

    Article  CAS  Google Scholar 

  46. Shah AA, Sui PC, Kim GS, Ye S (2007) A transient PEMFC model with CO poisoning and mitigation by O2 bleeding and Ru-containing catalyst. J Power Sources 166(1):1–21

    Article  CAS  Google Scholar 

  47. Gottesfeld S, Pafford J (1988) A new approach to the problem of carbon-monoxide poisoning in fuel-cells operating at low-temperatures. J Electrochem Soc 135(10):2651–2652

    Article  CAS  Google Scholar 

  48. Zhang JX, Thampan T, Datta R (2002) Influence of anode flow rate and cathode oxygen pressure on CO poisoning of proton exchange membrane fuel cells. J Electrochem Soc 149(6):A765–A772

    Article  CAS  Google Scholar 

  49. Zhang JX, Datta R (2005) Electrochemical preferential oxidation of CO in reformate. J Electrochem Soc 152(6):A1180–A1187

    Article  CAS  Google Scholar 

  50. Ioroi T, Akita T, Yamazaki S, Siroma Z, Fujiwara N, Yasuda K (2006) Comparative study of carbon-supported Pt/Mo-oxide and PtRu for use as CO-tolerant anode catalysts. Electrochim Acta 52(2):491–498

    Article  CAS  Google Scholar 

  51. Zhang JX, Datta R (2002) Sustained potential oscillations in proton exchange membrane fuel cells with PtRu as anode catalyst. J Electrochem Soc 149(11):A1423–A1431

    Article  CAS  Google Scholar 

  52. Kadyk T, Kirsch S, Hanke-Rauschenbach R, Sundmacher K (2011) Autonomous potential oscillations at the Pt anode of a PEM fuel cell under CO poisoning. Submitted to Electrochim Acta

  53. Heyrovský J (1927) A theory of overpotential. Recl Trav Chim Pays-Bas 46:582–585

    Article  Google Scholar 

  54. Wang JX, Springer TE, Adzic RR (2006) Dual-pathway kinetic equation for the hydrogen oxidation reaction on Pt electrodes. J Electrochem Soc 153:A1732–A1740

    Article  CAS  Google Scholar 

  55. Elezović NR, Gajic-Krstajic L, Radmilovic V, Vracar L, Krstajic NV (2009) Effect of chemisorbed carbon monoxide on Pt/C electrode on the mechanism of the hydrogen oxidation reaction. Electrochim Acta 54(4):1375–1382

    Article  Google Scholar 

  56. Vilekar SA, Fishtik I, Datta R (2010) Kinetics of the hydrogen electrode reaction. J Electrochem Soc 157(7):B1040–B1050

    Article  CAS  Google Scholar 

  57. Newman JS (1991) Electrochemical systems, chap 5, 2nd edn. Prentice-Hall, New Jersey, pp 116–133

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Hanke-Rauschenbach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kadyk, T., Hanke-Rauschenbach, R. & Sundmacher, K. Nonlinear frequency response analysis for the diagnosis of carbon monoxide poisoning in PEM fuel cell anodes. J Appl Electrochem 41, 1021–1032 (2011). https://doi.org/10.1007/s10800-011-0298-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-011-0298-8

Keywords

Navigation