Skip to main content
Log in

A mechanistic model of the gas film dynamics during the electrochemical discharge phenomenon

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A model for the prediction of the current–voltage characteristics of a two electrodes cell incorporating the dynamics of the gas film formed during the electrochemical discharge phenomenon is developed. In its mean-field version, the model presents good qualitative agreement but overestimates the hysteresis effect and predicts too large current densities for the cell operation once the gas film is formed. An improved stochastic model, which assumes gas film departures from the electrode surface according to a Poisson process, addresses these issues and gives significantly better predictions. Two relations are presented which allow estimating the mean gas film detachment time and its variance from the experimental study of the hysteresis in the forward and reverse scan of a two electrode cell operated at high current densities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

A :

Electrode surface (m2)

F :

Faraday constant (C mol−1)

h b :

Effective average bubble height (m)

I :

Current (A)

j crit :

Nominal critical current density, nominal current density at which a gas film can be formed (A m−2)

j local :

Local current density (A m−2)

N :

Number of lattice sites per surface (m−2)

n :

Stoichiometric number

n s :

Average normalised number (per total number of lattice sites) of clusters of size s

P :

Average size of infinite cluster (in number of sites per total number of sites in the lattice)

p :

Pressure (Pa)

p c :

Percolation threshold

R :

Ideal gas constant (J K−1 mol−1)

R(θ):

Inter-electrode resistance (with the presence of bubbles) (Ω)

R bulk :

Bulk inter-electrode resistance (without the presence of bubbles) (Ω)

s :

Cluster size (in number of lattice sites)

T :

Temperature (K)

t :

Time (s)

t f :

Average gas film formation time (s)

U :

Cell terminal voltage (V)

U crit :

Critical voltage, voltage at which a gas film can be formed (V)

U d :

Water decomposition potential (V)

V b :

Volume of a gas bubble of size s = 1 (m3)

\( \dot{V}_{g} \) :

Gas volume per unit of time (m3 s−1)

v :

Voltage scan rate (V s−1)

z :

Charge number

β :

Coefficient of Faradic gas production (m3 s−1 A−1)

θ :

Electrode surface bubble coverage

Δt b :

Average bubble detachment time (s)

Δt g :

Average gas film detachment time (S)

Over lined:

Normalised quantities

References

  1. Fizeau H, Foucault L (1844) Ann Chim Phys XI 3ème série : 370

  2. Wüthrich R, Mandin Ph (2009) Electrochim Acta 54:4031

    Article  Google Scholar 

  3. Gubkin J (1887) Annal Physik 32:114

    Article  Google Scholar 

  4. Wehnelt A (1899) Annal Physik 304:233. The article was originally published in 1899 Elektrotechnische Zeitschrift 4:76

  5. Kurafuji H, Suda K (1968) Ann CIRP 16:415

    Google Scholar 

  6. Wüthrich R, Fascio V (2005) Intern J Mach Tools Manuf 45:1095

    Article  Google Scholar 

  7. Wüthrich R (2009) Micromachining using electrochemical discharge phenomenon: fundamentals and applications of spark assisted chemical engraving, vol 6. William Andrew, Micro and nano technologies, Oxford

    Google Scholar 

  8. Yerokhin AL, Nie X, Leyland A, Matthews A, Dowey SJ (1999) Surf Coat Technol 122:73

    Article  CAS  Google Scholar 

  9. Gao JZ, Wang XY, Hu ZA, Hou JG, Lu QF (2001) Plasma Sci Technol 3:765

    Article  CAS  Google Scholar 

  10. Kawamura H, Moritani K, Ito Y (1998) Plasmas Ions 1:29

    Article  CAS  Google Scholar 

  11. Lal A, Bleuler H, Wüthrich R (2008) Electrochem Commun 10:488

    Article  CAS  Google Scholar 

  12. Vogt H, Thonstad J (2003) J Alum 79:98

    CAS  Google Scholar 

  13. Kellogg HH (1950) J Electrochem Soc 97:133

    Article  CAS  Google Scholar 

  14. Guilpin Ch, Garbaz-Olivier J (1977) Spectrochim Acta 32B:155

    CAS  Google Scholar 

  15. Azumi K, Mizuno T, Akimotot T, Ohmori T (1999) J Electrochem Soc 146:3374

    Article  CAS  Google Scholar 

  16. Allagui A, Wüthrich R (2009) Electrochim Acta 54:5336

    Article  CAS  Google Scholar 

  17. Klupathy E (1902) Annal Physik 314:147

    Article  Google Scholar 

  18. Mazza B, Pedeferri P, Re G (1978) Electrochim Acta 23:87

    Article  CAS  Google Scholar 

  19. Guilpin Ch, Garbaz-Olivier J (1978) J Chim Phys Phys Chim Biol 75:723

    CAS  Google Scholar 

  20. Valognes JC, Bardet JP, Mergault P (1987) Spectrochim Acta 42B:445

    CAS  Google Scholar 

  21. Vogt H (1997) Electrochim Acta 42:2695

    Article  CAS  Google Scholar 

  22. Vogt H (1999) J Appl Electrochem 29:137

    Article  CAS  Google Scholar 

  23. Vogt H, Thonstad J (2002) J Appl Electrochem 32:241

    Article  CAS  Google Scholar 

  24. Mandin Ph, Hamburger J, Bessou S, Picard G (2005) Electrochim Acta 51:1140

    Article  Google Scholar 

  25. Wüthrich R, Comninellis Ch, Bleuler H (2005) Electrochim Acta 50:5242

    Article  Google Scholar 

  26. Wüthrich R, Hof LA (2006) Intern J Machine Tools Manuf 46:828

    Article  Google Scholar 

  27. Vogt H, Balzer RJ (2005) Electrochim Acta 50:2073

    Article  CAS  Google Scholar 

  28. Stauffer D, Aharony A (1998) Introduction to percolation theory. Taylor and Francis, London

    Google Scholar 

  29. Sauer T (2006) Numerical analysis. Pearson-Addison Wesley

  30. Wüthrich R, Baranova EA, Bleuler H, Comninellis Ch (2004) Electrochem Commun 6:1199

    Article  Google Scholar 

  31. Wüthrich R, Hof LA, Lal A, Fujisaki K, Bleuler H, Mandin Ph, Picard G (2005) J Micromech Microeng 15:268

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Wüthrich.

Additional information

Dedicated to Prof. Ch. Comninellis’ 65th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Haddad, R., Wüthrich, R. A mechanistic model of the gas film dynamics during the electrochemical discharge phenomenon. J Appl Electrochem 40, 1853–1858 (2010). https://doi.org/10.1007/s10800-010-0141-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-010-0141-7

Keywords

Navigation