Skip to main content
Log in

Electrochemical treatment of aqueous solutions containing urea

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Investigations on the anodic decomposition of urea using Ti/Pt and Ti/(RuO2–TiO2)40:60 electrodes were carried out. The kinetics of the process were examined in a periodic electrolyser. The effect of anodic current density, initial urea concentration, and sodium chloride concentration on the effectiveness of the basic process (average rate of urea decomposition, current efficiency, and unit power consumption) is discussed. When a Ti/Pt electrode is applied for urea removal from aqueous solution urea is not decomposed directly at the surface of the electrode, but rather in the bulk of the solution by hypochlorite formed during the process. When the Ti/(RuO2–TiO2)40:60 electrode is used for the removal of urea from aqueous solutions, the reaction of urea with chlorine adsorbed at the electrode predominates. In both cases non-toxic products of urea decomposition (N2, CO2,) are formed. Comparison of the effectiveness of anodic decomposition of urea for the Ti/Pt and Ti/(RuO2–TiO2)40:60 electrodes in the periodic electrolyser at optimum process parameters has revealed that the former electrode is more favorable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kroschwitz I, Howe-Grant M (1995) Kirk Othmer encyclopedia of chemical technology, Suppl, 4th edn. Wiley, New York

    Google Scholar 

  2. Rahimpour MR (2004) Chem Eng Process 43:1299

    Article  CAS  Google Scholar 

  3. Zaborska W, Leszko MJ (1994) Pol J Chem 68:2733

    CAS  Google Scholar 

  4. Hüttl R, Bohmhammel K, Wolf G, Oehmgen R (1995) Term Acta 250:1

    Article  Google Scholar 

  5. Gupta SK, Sharma R (1996) Water Res 30:593

    Article  CAS  Google Scholar 

  6. Magne V, Amounas M, Innocent C, Dejean E, Seta P (2002) Desalination 144:163

    Article  CAS  Google Scholar 

  7. Simka W, Piotrowski J (2007) Przem Chem 86:841

    CAS  Google Scholar 

  8. Dhamo N (1996) Waste Manag 16:257

    Article  CAS  Google Scholar 

  9. Dziewinski J, Marczak S, Nuttall E, Purdy G, Smith W, Taylor J, Zhou C (1998) Waste Manag 18:257

    Article  CAS  Google Scholar 

  10. Kőrbahti BK, Tanyolaç A (2003) Water Res 37:1505

    Article  Google Scholar 

  11. Cañizares P, Lobato J, Paz R, Rodrigo MA, Sáez C (2005) Water Res 39:2687

    Article  Google Scholar 

  12. Bunce NJ, Merica SG, Lipkowski J (1997) Chemosphere 35:2719

    Article  CAS  Google Scholar 

  13. Polcaro AM, Palmas S, Renoldi F, Mascia M (1999) J Appl Electrochem 29:147

    Article  CAS  Google Scholar 

  14. Zanta C, Michaud PA, Comninellis Ch, Andrade AR, Boodts J (2003) J Appl Electrochem 33:1211

    Article  CAS  Google Scholar 

  15. Chen G, Betterton EA, Arnold RD (1999) J Appl Electrochem 29:961

    Article  CAS  Google Scholar 

  16. Brillas E, Boye B, Sirés I, Garrido JA, Rodriguez RM, Arias C, Cabot PL, Comninellis Ch (2004) Electrochim Acta 49:4487

    Article  CAS  Google Scholar 

  17. Chiang L, Chang J, Tseng S (1997) Water Sci Technol 36(2–3):123

    CAS  Google Scholar 

  18. Chiang L, Chang J, Wen T (1995) Water Res 29:671

    Article  CAS  Google Scholar 

  19. Szpyrkowicz L, Naumczyk J, Zilio-Grandi F (1995) Water Res 29:517

    Article  CAS  Google Scholar 

  20. Szpyrkowicz L, Kelsall GH, Kaul SN, Faveri M (2001) Chem Eng Sci 56:1579

    Article  CAS  Google Scholar 

  21. Szpyrkowicz L, Kaul SN, Neti RN, Satyanarayan S (2005) Water Res 39:1601

    Article  CAS  Google Scholar 

  22. Gosti M, Kalogerakis N, Psillakis E, Samaras P, Mantzavinos D (2005) Water Res 39:4177

    Article  Google Scholar 

  23. Naumczyk J, Szpyrkowicz L, Zilio-Grandi F (1996) Water Sci Technol 34(11):17

    Article  CAS  Google Scholar 

  24. Lin SH, ChF Peng (1996) Water Res 30:587

    Article  CAS  Google Scholar 

  25. Vlyssides AG, Papaioannou D, Loizidoy M, Karlis PK, Zorpas AA (2000) Waste Manag 20:569

    Article  CAS  Google Scholar 

  26. Szpyrkowicz L, Juzzolino C, Kaul SN (2001) Water Res 35:2129

    Article  CAS  Google Scholar 

  27. Socha A, Chrzescijanska E, Kusmierek E (2005) Dyes Pigment 67:71

    Article  CAS  Google Scholar 

  28. Vlyssides AG, Israilides CJ, Loizidou M, Karvouni G, Mourafeti V (1997) Water Sci Technol 36(2–3):271

    CAS  Google Scholar 

  29. Hernlem BJ (2005) Water Res 39:2245

    Article  CAS  Google Scholar 

  30. Yao SJ, Wolfson SK Jr, Ahn BK, Liu CC (1973) Nature 241:471

    Article  CAS  Google Scholar 

  31. Fels M (1978) Med Biol Eng Comput 16:25

    Article  CAS  Google Scholar 

  32. Keller RW Jr, Yao SJ, Brown JM, Wolfson SK Jr, Zeller MV (1980) Bioelectrochem Bioenerg 7:469

    Article  CAS  Google Scholar 

  33. Wright JC, Michaels AS, Appleby AJ (1986) AIChE J 32:1450

    Article  CAS  Google Scholar 

  34. Gromyko VA, Tsygankova TB, Gaidadymov VB, Vasil’ev YuB, Bagotskii VS (1973) Sov Electrochem 9:1685

    CAS  Google Scholar 

  35. Gromyko VA, Tsygankova TB, Gaidadymov VB, Vasil’ev YuB, Bagotskii VS (1974) Sov Electrochem 10:57

    CAS  Google Scholar 

  36. Grinval’d VM, Leshchinskii GM, Rodin VV, Strelkov SI, Yakovleva AA (2003) Biomed Eng 37:67

    Article  Google Scholar 

  37. Bolzan AE, Iwasita T (1988) Electrochim Acta 33:109

    Article  CAS  Google Scholar 

  38. Gromyko VA, Tsygankova TB, Gaidadymov VB, Vasil’ev YuB, Bagotskii VS (1975) Sov Electrochem 11:589

    CAS  Google Scholar 

  39. Fuchs J (1959) Chemiker Ztg Chem Aparatur 83:223

    CAS  Google Scholar 

  40. Simka W, Piotrowski J, Nawrat G (2007) Electrochim Acta 52:5696

    Article  CAS  Google Scholar 

  41. Nawrat G, Simka W, Nieużyła Ł, Swadźba L (2006) Przem Chem 85:858

    CAS  Google Scholar 

  42. Patzer JF (1991) J Mol Catal 70:217

    Article  CAS  Google Scholar 

  43. Patzer JF (1991) J Mol Catal 70:231

    Article  CAS  Google Scholar 

  44. Beer HB (1969) British Patent No 1, 147, 442

  45. Beer HB (1972) British Patent No 3, 632, 498

  46. Hine F, Yasuda M, Yoshida T (1977) J Electrochem Soc 124:500

    Article  CAS  Google Scholar 

  47. Watt GW, Chrisp JD (1954) Anal Chem 3:452

    Article  Google Scholar 

  48. Minczewski J, Marczenko Z (2001) Analytical chemistry, vol 2. PWN, Warsaw, Poland

    Google Scholar 

  49. Piotrowski J, Simka W, Koszałka A (2003) Ecol Chem Eng 10:131

    CAS  Google Scholar 

  50. Piotrowski J, Simka W, Schlesinger J (2003) Ecol Chem Eng 10:327

    CAS  Google Scholar 

  51. Krzysztofiak M, Luszniewicz A (1979) Statistics. PWE, Warsaw, Poland

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wojciech Simka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simka, W., Piotrowski, J., Robak, A. et al. Electrochemical treatment of aqueous solutions containing urea. J Appl Electrochem 39, 1137–1143 (2009). https://doi.org/10.1007/s10800-008-9771-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-008-9771-4

Keywords

Navigation