Skip to main content
Log in

A thin-gap cell for selective oxidation of 4-methylanisole to 4-methoxy-benzaldehyde-dimethylacetal

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

An electrochemical microreactor for organic electrosynthesis has been investigated for the anodic synthesis of 4-methylanisole to 4-methoxy-benzaldehyde-dimethylacetal in methanol solution. Selectivity and conversion in the single-pass thin-gap flow reactor were examined as a function of the composition of the electrolyte solution, the flow rate and the applied current. The experimental results indicate that potassium fluoride currently used for industrial synthesis and providing higher yields than sodium perchlorate, exerts an influence on the reaction mechanism: high KF concentrations facilitate the undesired oxidation of the diacetal. Nevertheless, a feed solution containing 0.1 M anisole in 0.01 M KF can be converted at 90% in the 100 μm thin-gap cell with acceptable voltages and a measured selectivity of nearly 87%. The selectivity observed substantially higher than that typically observed in conventional electrochemical cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bersier BM, Carlsson L, Bersier J (1994) Topics in current chemistry. Springer-Verlag, Berlin, Heidelberg

    Google Scholar 

  2. Lund H, Hammerich O (2001) Organic electrochemistry, 4th edn. Marcel Dekker, New York

    Google Scholar 

  3. Pletcher D, Walsh FC (1990) Industrial electrochemistry, 2nd edn. Chapman-Hall, London–New York, 1990

    Google Scholar 

  4. Nishiguchi I, Hirashima T (1985) J Org Chem 50:539

    Article  CAS  Google Scholar 

  5. Degner D (1988) Organic electrochemistry in industry. In: Topics in current chemistry. Springer-Verlag, Berlin, Heidelberg

  6. Löwe H, Ehrfeld W (1999) Electrochim Acta 44:3679

    Article  Google Scholar 

  7. Rode S, Altmeyer S, Matlosz M (2004) J Appl Electrochem 34:671

    Article  CAS  Google Scholar 

  8. Wendt H, Bitterlich S (1992) Electrochim Acta 37:1951

    Article  CAS  Google Scholar 

  9. Wendt H, Bitterlich S, Lodowicks E, Liu Z (1992) Electrochim Acta 37:1959

    Article  CAS  Google Scholar 

  10. Lindermeir A, Horst C, Hoffmann U (2003) Ultrasonics Sonochem 10:223

    Article  CAS  Google Scholar 

  11. Bitterlich S (1990) PhD thesis, TH Darmstadt

  12. Venkatachalapathy MS, Ramaswamy R, Udupa HVK (1958) Bull Acad Polon Sci Ser Sci Chim 6:478

    Google Scholar 

  13. Wendt H, Schneider H (1986) J Appl Electrochem 16:134

    Article  CAS  Google Scholar 

  14. Attour A, Rode S, Bystron T, Matlosz M, Lapicque F (2007) J Appl Electrochem 37:861

    Article  CAS  Google Scholar 

  15. Beck F (1987) Organic electrosynthesis, Ullmann’s encyclopedia of industrial chemistry. VCH Verlagsgesellschaft mbH, Weinheim

    Google Scholar 

  16. Küpper M, Hessel V, Löwe H, Stark W, Jinkel J, Michel M, Schmidt-Traub H (2003) Electrochim Acta 48:2889

    Article  Google Scholar 

  17. Ziogas A, Löwe H, Küpper M, Ehrfeld W (2000) Electrochemical microreactors: a new approach for microreaction technology. In: Ehrfeld W (ed) Microreaction technology: industrial prospects, IMRET3: Proceedings of the 3rd international conference on microreaction technology, Frankfurt/Main. Springer-Verlag, Berlin, pp 136–156

  18. Cao E, Gavridilis A, Motherwell WB (2004) Chem Eng Sci 59:4803

    Article  CAS  Google Scholar 

  19. Ge H, Chen G, Yuan Q, Li H (2005) Catalysis Today 110:171

    Article  CAS  Google Scholar 

  20. Paddon CA, Pritchard GJ, Thiemann T, Marken F (2002) Electrochem Commun 4:825

    Article  CAS  Google Scholar 

  21. Horri D, Atobe M, Fuchigami T, Marken F (2005) Electrochem Commun 7:35

    Article  Google Scholar 

  22. He P, Watts P, Maken F, Haswell SJ (2005) Electrochem Commun 7:918

    Article  CAS  Google Scholar 

  23. Goodridge F, Scott K (1995) Electrochemical process engineering. Plenum Press, New York and London

    Google Scholar 

  24. Pickett DJ (1979) Electrochemical reactor design, 2nd edn. Elsevier, New York, 1979

    Google Scholar 

  25. Attour A (2007) Réacteur d’électrosynthèse microstructuré: conception, étude et développement appliqués à l’oxydation du 4-méthylanisole, PhD Dissertation, INPL, Nancy (in French)

Download references

Acknowledgments

Financial support for this work was provided by the European Project Impulse (project reference ID NMP2-CT-2005-011816 of the 6th Framework Programme for Research and Technological Development of the European Union). The authors also thank the French Ministry of Research for the PhD grant allocated to A. Attour.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Lapicque.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Attour, A., Rode, S., Ziogas, A. et al. A thin-gap cell for selective oxidation of 4-methylanisole to 4-methoxy-benzaldehyde-dimethylacetal. J Appl Electrochem 38, 339–347 (2008). https://doi.org/10.1007/s10800-007-9444-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-007-9444-8

Keywords

Navigation