Skip to main content

Advertisement

Log in

Determining the atomic hydrogen surface coverage on iron and nickel electrodes under water treatment conditions

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Reductive methods for removing, detoxifying, or inactivating contaminants in water often involve reactions with atomic hydrogen produced from water reduction. Knowledge of how the solution pH value and electrode potential affect the concentration of atomic hydrogen on the reactive surface will be useful for evaluating possible reaction mechanisms and in optimizing treatment schemes. Presently, there are no simple methods for determining the atomic hydrogen surface coverage on the base metals that are typically used as cathodes or sacrificial reactants in water treatment operations. This research develops and evaluates an iterative, coulometric method for determining the fractional atomic hydrogen surface coverage (θH) on iron and nickel electrodes under water treatment conditions. The method is applicable at pH values and potentials where proton discharge is the rate-limiting step for the hydrogen evolution reaction (HER), and is valid under conditions where the metals are covered by oxide layers that lower the apparent electron transfer coefficients by up to 40% as compared to oxide-free conditions at low pH values. The method is also able to determine the exchange current density and the rate constants for the Volmer discharge and Tafel recombination steps of the HER.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tamilmani S., Huang W.H., Raghavan S. and Farrell J.(2004). IEEE Trans. Semicond. Manuf. 17: 448

    Article  Google Scholar 

  2. Fiedor J.N., Bostick W.D., Jarabek R.J., and Farrell J.(1998). Environ. Sci. Technol. 32: 1466

    Article  CAS  Google Scholar 

  3. Farrell J., Bostick W.D., Fiedor J.N. and Jarabek R.J.(1999). Environ. Sci. Technol. 33:1244

    Article  CAS  Google Scholar 

  4. Gould J.P.(1982). Water Res. 16: 871

    Article  CAS  Google Scholar 

  5. Powell R.M., Puls R.W., Hightower S.K. and Sabatini D.A.(1995). Environ. Sci. Technol. 29: 1913

    Article  CAS  Google Scholar 

  6. Siantar D.P., Schrier C.G., Chou C.S. and Reinhard M.(1996). Water Res. 30: 2315

    Article  CAS  Google Scholar 

  7. Huang Y.H., Zhang T.C., Shea P.J. and Comfort S.D.(2003). J. Environ. Qual. 32:1306

    Article  CAS  Google Scholar 

  8. Melitas N., Chuffe O. and Farrell J.(2001). Environ Sci Technol 35: 3948

    Article  CAS  Google Scholar 

  9. Gillham R.W. and O’Hannesin S.F.(1994). Ground Water 32: 958

    Article  CAS  Google Scholar 

  10. Matheson L.J., Tratnyek P.G. (1994). Environ. Sci. Technol. 28:2045

    Article  CAS  Google Scholar 

  11. Vlyssides A.G., Loizidou M., Karlis P.K. and Zorpas A.A.(1999). Hazard. Ind. Wastes. 31: 147

    Google Scholar 

  12. Nam S. and Tratnyek P.G.(2000). Water Res. 34: 1837

    Article  CAS  Google Scholar 

  13. W. Zhang and B. Chuan, Rapid and Complete Dechlorination of TCE and PCB’s by Nanoscale Fe and Pd/Fe Particles. Abstracts of the 213th Meeting of the American Chemical Society, San Francisco, 13–17 April (1997) 37, pp. 78–79

  14. Murena F. and Schioppa E.(2000). Appl. Catal. B 27: 257

    Article  CAS  Google Scholar 

  15. Rodgers J.D. and Bunce N.J. (2001). Environ. Sci. Technol. 35: 406

    Article  CAS  Google Scholar 

  16. Agrawal A. and Tratnyek P.G.(1996). Environ. Sci. Technol. 30: 153

    Article  CAS  Google Scholar 

  17. Liu Z., Arnold R.G., Betterton E.A. and Festa K.D.(1999). Env. Eng. Sci. 16: 1

    Article  Google Scholar 

  18. M.C. Helvenston, R.W. Presley and B. Zhao, Electro-reductive Dehalogenation on Palladized Graphite Electrodes. Abstracts of the 213th Meeting of the American Chemical Society, San Francisco, 13–17 April (1997) 37, pp. 294–297

  19. Lambert F.L., Hasslinger B.L. and Franz R.N.(1975). J Electrochem Soc 122:737

    Article  CAS  Google Scholar 

  20. Arnold W.A. and Roberts A.L.(1998). Environ. Sci. Technol. 32:3017

    Article  CAS  Google Scholar 

  21. Su C. and Puls R.W.(1999). Environ. Sci. Technol. 33: 163

    Article  CAS  Google Scholar 

  22. Boronina T., Klabunde K.J. and Sergeev G.(1995). Environ. Sci. Technol. 29: 1511

    Article  CAS  Google Scholar 

  23. Wang J. and Farrell J.(2003). Environ. Sci. Technol. 37:3891

    Article  CAS  Google Scholar 

  24. Li T. and Farrell J.(2000). Environ. Sci. Technol. 34:173

    Article  CAS  Google Scholar 

  25. Koltoff I.M., Lee T.S., Stocesova D. and Parry E.P.(1950). Anal. Chem. 22:521

    Article  Google Scholar 

  26. Wang J., Blowers P. and Farrell J.(2004). Environ. Sci. Technol. 38: 1576

    Article  CAS  Google Scholar 

  27. Bockris J.O’M. and Reddy A.K.(1970). Modern Electrochemistry, Volume 2. Plenum Press, New York

    Google Scholar 

  28. Bockris J.O’M., Carbajal J.L., Scharifker B.R. and Chandrasekaran K.(1987). J. Electrochem. Soc. 134: 1957

    Article  CAS  Google Scholar 

  29. Flitt H.J. and Bockris J.O’M.(1982). Int. J. Hydrogen Energy 7: 411

    Article  CAS  Google Scholar 

  30. Abd Elhamid M.H., Ateya B.G., Weil K.G. and Pickering H.W.(2000). J. Electrochem. Soc. 147:2148

    Article  CAS  Google Scholar 

  31. T.M. Sivavec, P.D. Mackenzie, D.P. Horney and S.S. Baghel, in Proceedings of the International Containment Technology Conference, St. Petersburg, FL, 9–12 Feb. (1997) pp. 753–759

  32. Gui L., Gillham R.W. and Odziemkowski M.S.(2000). Environ. Sci. Technol. 34: 3489

    Article  CAS  Google Scholar 

  33. Bard A.J. and Faulkner L.R.(1980). Electrochemical Methods. John Wiley and Sons, New York

    Google Scholar 

  34. O’M Bockris J. and Potter E.C.(1952). J. Chem. Phys. 20: 614

    Article  CAS  Google Scholar 

  35. Li T. and Farrell J.(2001). Environ. Sci. Technol. 35: 3560

    Article  CAS  Google Scholar 

  36. Fogler H.S. (1999). Elements of Chemical Reaction Engineering, 3rd ed. Prentice-Hall Upper Saddle River, NJ

    Google Scholar 

  37. Pezzatini G. and Guidelli R.(1977). J. Electroanal. Chem. 76: 51

    CAS  Google Scholar 

  38. Kim J.W. and Park S.T.(1999). J. Electrochem. Soc. 146: 1075

    Article  CAS  Google Scholar 

  39. Christensen P.A. and Hamnet A.(1994). Techniques and Mechanisms in Electrochemistry. Chapman and Hall, Oxford

    Google Scholar 

Download references

Acknowledgements

This project was made possible by Grant No. 2P42ES04940-11 from the National Institutes for Environmental Health Sciences of the National Institutes for Health, with funds from the U.S. Environmental Protection Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Farrell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Farrell, J. Determining the atomic hydrogen surface coverage on iron and nickel electrodes under water treatment conditions. J Appl Electrochem 36, 369–374 (2006). https://doi.org/10.1007/s10800-005-9079-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-005-9079-6

Key words

Navigation