Skip to main content

Advertisement

Log in

Circulating miRNAs and their functional genetic variants in pseudoexfoliative glaucoma: potential of miR-146a-5p as a diagnostic biomarker

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

The etiology and pathogenesis of pseudoexfoliation syndrome (PEX) and its advancement into pseudoexfoliative glaucoma (PEG) are not fully understood. In this study, we aimed to evaluate the possible role played by two circulating microRNAs (miR-146a-5p and miR-196a-5p) in plasma and their functional genetic variants MIR146A rs2910164 and MIR196A2 rs11614913 in susceptibility to PEG or PEX.

Methods

Plasma miRNA relative expression of 27 patients with PEG, 25 patients with PEX and 27 controls was determined using quantitative RT-PCR, and fold change was calculated using the 2−ΔΔCt method. Genotyping of 300 patients with PEG, 300 patients with PEX, and 300 controls was performed using a PCR-restriction fragment length polymorphism analysis.

Result

Plasma miR-146a-5p relative expression was significantly elevated in patients with PEG (3.9-fold) (P < .000) and patients with PEX (2.7-fold) relative to controls (P = .001). The diagnostic ability of plasma miR-146a-5p expression fold change was good for discriminating PEG vs. controls (AUC = 0.897, P < .000), and the optimal decision threshold was 1.83 (sensitivity = 74%, specificity = 93%). Plasma miR-196a-5p relative expression did not differ significantly between study groups. No significant difference in terms of the minor allele frequency or the distribution of genotypes for MIR146A rs2910164 G/C or MIR196A2 rs11614913 C/T was observed between study groups.

Conclusions

Circulating miR-146a-5p can contribute to the risk of PEX/PEG. Therefore, we propose that plasma miR-146a-5p can be developed as a potential biomarker for the minimally invasive diagnoses of PEX/PEG and as a potential therapeutic target with further studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Schlötzer Schrehardt U, Küchle M, Naumann GOH (1991) Electron-microscopic Identification of Pseudoexfoliation Material in extrabulbar tissue. Arch Ophthalmol 109(4):565–570. https://doi.org/10.1001/archopht.1991.01080040133044

    Article  PubMed  Google Scholar 

  2. Schlötzer-Schrehardt U, Naumann GOH (2006) Ocular and systemic pseudoexfoliation syndrome. Am J Ophthalmol 141(5):924. https://doi.org/10.1016/j.ajo.2006.01.047

    Article  Google Scholar 

  3. Ritch R, Schlötzer-Schrehardt U, Konstas AGP (2003) Why is glaucoma associated with exfoliation syndrome? Prog Retin Eye Res 22:253–275. https://doi.org/10.1016/S1350-9462(02)00014-9

    Article  PubMed  Google Scholar 

  4. Yildirim Z, Yildirim F, Uçgun NI, Sepici-Dinçel A (2013) The role of the cytokines in the pathogenesis of pseudoexfoliation syndrome. Int J Ophthalmol 6(1):50. https://doi.org/10.3980/J.ISSN.2222-3959.2013.01.10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Taganov KD, Boldin MP, Chang KJ, Baltimore D (2006) NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci USA 103(33):12481–12486. https://doi.org/10.1073/PNAS.0605298103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lukiw WJ, Zhao Y, Jian GC (2008) An NF-kappaB-sensitive micro RNA-146a-mediated inflammatory circuit in Alzheimer disease and in stressed human brain cells. J Biol Chem 283(46):31315–31322. https://doi.org/10.1074/JBC.M805371200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fawzy MS, Hussein MH, Abdelaziz EZ, Yamany HA, Ismail HM, Toraih EA (2016) Association of MicroRNA-196a2 variant with response to short-acting β2-agonist in COPD: an egyptian pilot study. PLoS One 11(4):e0152834. https://doi.org/10.1371/JOURNAL.PONE.0152834

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sharma S, Chataway T, Klebe S, Griggs K, Martin S, Chegeni N et al (2018) Novel protein constituents of pathological ocular pseudoexfoliation syndrome deposits identified with mass spectrometry. Mol Vis 24:801

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Reuten R, Patel TR, McDougall M, Rama N, Nikodemus D, Gibert B et al (2016) Structural decoding of netrin-4 reveals a regulatory function towards mature basement membranes. Nat Commun 7(1):1–17. https://doi.org/10.1038/ncomms13515

    Article  CAS  Google Scholar 

  10. Zenkel M, Kruse FE, Jünemann AG, Naumann GOH, Schlötzer-Schrehardt U (2006) Clusterin deficiency in eyes with pseudoexfoliation syndrome may be implicated in the aggregation and deposition of pseudoexfoliative material. Investig Ophthalmol Vis Sci 47(5):1982–1990. https://doi.org/10.1167/iovs.05-1580

    Article  Google Scholar 

  11. Okutucu M, Findik H, Aslan MG, Arpa M (2020) Is netrin-1 deficiency responsible for inflammation and systemic diseases related to pseudoexfoliation? J Glaucoma 29(11):1077–1081. https://doi.org/10.1097/IJG.0000000000001624

    Article  PubMed  Google Scholar 

  12. Krumbiegel M, Pasutto F, Mardin CY, Weisschuh N, Paoli D, Gramer E et al (2009) Exploring functional candidate genes for genetic association in german patients with pseudoexfoliation syndrome and pseudoexfoliation glaucoma. Investig Ophthalmol Vis Sci 50(6):2796–2801. https://doi.org/10.1167/iovs.08-2339

    Article  Google Scholar 

  13. Tellios N, Belrose JC, Tokarewicz AC, Hutnik C, Liu H, Leask A et al (2017) TGF-β induces phosphorylation of phosphatase and tensin homolog: Implications for fibrosis of the trabecular meshwork tissue in glaucoma. Sci Rep. https://doi.org/10.1038/s41598-017-00845-x

    Article  PubMed  PubMed Central  Google Scholar 

  14. Malacards - Human Disease Database. Available from: https://www.malacards.org/card/exfoliation_syndrome#related_genes

  15. miRPathDB. Available from: https://mpd.bioinf.uni-sb.de/overview.html

  16. TargetScanHuman 8.0. Available from: http://www.targetscan.org/vert_80/

  17. Króliczewski J, Sobolewska A, Lejnowski D, Collawn JF, Bartoszewski R (2018) MicroRNA single polynucleotide polymorphism influences on microRNA biogenesis and mRNA target specificity. Gene 640:66–72. https://doi.org/10.1016/J.GENE.2017.10.021

    Article  PubMed  Google Scholar 

  18. Jazdzewski K, Murray EL, Franssila K, Jarzab B, Schoenberg DR, De La Chapelle A (2008) Common SNP in pre-miR-146a decreases mature miR expression and predisposes to papillary thyroid carcinoma. Proc Natl Acad Sci USA 105(20):7269–7274. https://doi.org/10.1073/pnas.0802682105

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hoffman AE, Zheng T, Yi C, Leaderer D, Weidhaas J, Slack F et al (2009) MicroRNA miR-196a-2 and breast cancer: a genetic and epigenetic association study and functional analysis. Cancer Res 69(14):5970. https://doi.org/10.1158/0008-5472.CAN-09-0236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Drewry MD, Challa P, Kuchtey JG, Navarro I, Helwa I, Hu Y et al (2018) Differentially expressed microRNAs in the aqueous humor of patients with exfoliation glaucoma or primary open-angle glaucoma. Hum Mol Genet 27(7):1263–1275. https://doi.org/10.1093/HMG/DDY040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hindle AG, Thoonen R, Jasien JV, Grange RMH, Amin K, Wise J et al (2019) Identification of candidate miRNA biomarkers for glaucoma. Investig Ophthalmol Vis Sci 60(1):134–146. https://doi.org/10.1167/iovs.18-24878

    Article  CAS  Google Scholar 

  22. Kosior-Jarecka E, Czop M, Gasińska K, Wróbel-Dudzińska D, Zalewski DP, Bogucka-Kocka A et al (2021) MicroRNAs in the aqueous humor of patients with different types of glaucoma. Graefe’s Arch Clin Exp Ophthalmol 259(8):2337–2349. https://doi.org/10.1007/s00417-021-05214-z

    Article  CAS  Google Scholar 

  23. Hubens WHG, Krauskopf J, Beckers HJM, Kleinjans JCS, Webers CAB, Gorgels TGMF (2021) Small RNA sequencing of aqueous Humor and plasma in patients with primary open-angle glaucoma. Investig Opthalmology Vis Sci 62(7):24. https://doi.org/10.1167/iovs.62.7.24

    Article  CAS  Google Scholar 

  24. Rao A, Chakraborty M, Roy A, Sahay P, Pradhan A, Raj N (2020) Differential miRNA expression: signature for glaucoma in pseudoexfoliation. Clin Ophthalmol 14:3025–3038. https://doi.org/10.2147/OPTH.S254504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wecker T, Hoffmeier K, Plötner A, Andreas Grüning B, Horres R, Backofen R et al (2016) MicroRNA profiling in aqueous humor of individual human eyes by next-generation sequencing. Invest Ophthalmol Vis Sci 57:1706–1713. https://doi.org/10.1167/iovs.15-17828

    Article  CAS  PubMed  Google Scholar 

  26. Can Demirdöğen B, Koçan Akçin C, Özge G, Mumcuoğlu T (2019) Evaluation of tear and aqueous humor level, and genetic variants of connective tissue growth factor as biomarkers for early detection of pseudoexfoliation syndrome/glaucoma. Exp Eye Res. 189:107837. https://doi.org/10.1016/j.exer.2019.107837

    Article  CAS  PubMed  Google Scholar 

  27. miRBase. Available from: https://www.mirbase.org/

  28. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25(4):402–408. https://doi.org/10.1006/METH.2001.1262

    Article  CAS  PubMed  Google Scholar 

  29. Szpechcinski A, Florczuk M, Duk K, Zdral A, Rudzinski S, Bryl M et al (2019) The expression of circulating miR-504 in plasma is associated with EGFR mutation status in non-small-cell lung carcinoma patients. Cell Mol Life Sci 76(18):3641–3656. https://doi.org/10.1007/s00018-019-03089-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Conover W (1980) Section 5. In: Conover W (ed) Practical nonparametric statistic, 2nd edn. Wiley, New York, pp 229–239

  31. SNPStats: your web tool for SNP analysis. Available from: https://www.snpstats.net/start.htm

  32. Johnson JL. Home | GAS Power Calculator [Internet]. University of Michigan. 2017. Available from: http://csg.sph.umich.edu/abecasis/cats/gas_power_calculator/

  33. Freddo TF (2013) A contemporary concept of the blood-aqueous barrier. Prog Retin Eye Res 32(1):181–195. https://doi.org/10.1016/J.PRETEYERES.2012.10.004

    Article  CAS  PubMed  Google Scholar 

  34. Ménard C, Rezende FA, Miloudi K, Wilson A, Tétreault N, Hardy P et al (2016) MicroRNA signatures in vitreous humour and plasma of patients with exudative AMD. Oncotarget 7(15):19171–19184. https://doi.org/10.18632/oncotarget.8280

    Article  PubMed  PubMed Central  Google Scholar 

  35. Lukiw WJ, Surjyadipta B, Dua P, Alexandrov PN (2012) Common micro RNAs (miRNAs) target complement factor H (CFH) regulation in Alzheimer’s disease (AD) and in agerelated macular degeneration (AMD). Int J Biochem Mol Biol 3(1):105–116

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Jang SY, Chae MK, Lee JH, Lee EJ, Yoon JS (2016) Role of miR-146a in the regulation of inflammation in an in vitro model of graves’ orbitopathy. Invest Ophthalmol Vis Sci 57(10):4027–4034. https://doi.org/10.1167/iovs.16-19213

    Article  PubMed  Google Scholar 

  37. Liang H, Huang W, Wang Y, Ding L, Zeng L (2019) Overexpression of MiR-146a-5p upregulates lncRNA HOTAIR in triple-negative breast cancer cells and predicts poor prognosis. Technol Cancer Res Treat 18:1533033819882949. https://doi.org/10.1177/1533033819882949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sasaki H, Yoshiike M, Nozawa S, Usuba W, Katsuoka Y, Aida K et al (2016) Expression level of urinary microRNA-146a-5p Is increased in patients with bladder cancer and decreased in those after transurethral resection. Clin Genitourin Cancer 14(5):e493–e499. https://doi.org/10.1016/J.CLGC.2016.04.002

    Article  PubMed  Google Scholar 

  39. Xue Y, Abou Tayoun AN, Abo KM, Pipas JM, Gordon SR, Gardner TB et al (2013) MicroRNAs as diagnostic markers for pancreatic ductal adenocarcinoma and its precursor, pancreatic intraepithelial neoplasm. Cancer Genet 206(6):217–221. https://doi.org/10.1016/j.cancergen.2013.05.020

    Article  CAS  PubMed  Google Scholar 

  40. Yu Q, Xu C, Yuan W, Wang C, Zhao P, Chen L et al (2017) Evaluation of plasma MicroRNAs as diagnostic and prognostic biomarkers in pancreatic adenocarcinoma: miR-196a and miR-210 could be negative and positive prognostic markers. Respectively Biomed Res Int 2017:6495867. https://doi.org/10.1155/2017/6495867

    Article  CAS  PubMed  Google Scholar 

  41. Qu S, Qiu O, Huang J, Liu J, Wang H (2021) Upregulation of hsa-miR-196a-5p is associated with MIR196A2 methylation and affects the malignant biological behaviors of glioma. Genomics 113(3):1001–1010. https://doi.org/10.1016/j.ygeno.2021.02.012

    Article  CAS  PubMed  Google Scholar 

  42. Lee JW, Kim N, Park JH, Kim HJ, Chang H, Kim JM et al (2017) Differential MicroRNA expression between gastric cancer tissue and non-cancerous gastric mucosa according to helicobacter pylori status. J Cancer Prev 22(1):33–39. https://doi.org/10.15430/jcp.2017.22.1.33

    Article  PubMed  PubMed Central  Google Scholar 

  43. Chatzikyriakidou A, Founti P, Melidou A, Minti F, Bouras E, Anastasopoulos E et al (2018) MicroRNA-related polymorphisms in pseudoexfoliation syndrome, pseudoexfoliative glaucoma, and primary open-angle glaucoma. Ophthalmic Genet 39(5):603–609. https://doi.org/10.1080/13816810.2018.1509352

    Article  CAS  PubMed  Google Scholar 

  44. Jazdzewski K, Liyanarachchi S, Swierniak M, Pachucki J, Ringel MD, Jarzab B et al (2009) Polymorphic mature microRNAs from passenger strand of pre-miR-146a contribute to thyroid cancer. Proc Natl Acad Sci USA 106(5):1502–1505. https://doi.org/10.1073/PNAS.0812591106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shen J, Ambrosone CB, Dicioccio RA, Odunsi K, Lele SB, Zhao H (2008) A functional polymorphism in the miR-146a gene and age of familial breast/ovarian cancer diagnosis. Carcinogenesis 29(10):1963–1966. https://doi.org/10.1093/CARCIN/BGN172

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the subjects for their participation in this study.

Funding

This study was supported by the Scientific and Technological Research Council of Turkey (TÜBİTAK, 318S074). The sponsor or funding organization had no role in the design or conduct of this research.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by TÖB, BCD, MTK and ÖGK. The first draft of the manuscript was written by BCD, and all authors commented on the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Birsen Can Demirdöğen.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Informed consent

This study protocol was reviewed and approved by the Research Ethics Committee of University of Health Sciences (Date: 16.10.2018, decision no: 18/243). Written informed consent was obtained from participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Can Demirdöğen, B., Öztürk Başer, T., Köylü, M.T. et al. Circulating miRNAs and their functional genetic variants in pseudoexfoliative glaucoma: potential of miR-146a-5p as a diagnostic biomarker. Int Ophthalmol 43, 3953–3967 (2023). https://doi.org/10.1007/s10792-023-02797-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-023-02797-w

Keywords

Navigation