Skip to main content

Advertisement

Log in

Genetic analysis of patients with primary congenital glaucoma

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To determine the common gene mutation in patients with primary congenital glaucoma (PCG) in the Southeast region of Turkey via genetic analysis and to evaluate whether there were other gene mutations in these patients.

Methods

A total of 25 patients with PCG were included in this study. We performed sequence analysis including all exons of cytochrome p450 1B1 (CYP1B1), myocilin (MYOC), forkhead box C1 (FOXC1), and paired-like homeodomain 2 (PITX2) genes of the obtained samples. Further, we analyzed the results using the Nextgen analysis program.

Results

The CYP1B1 gene mutation was detected in 20 (80%) of 25 patients, and FOXC1 gene mutation was detected in one (4%) patient. The mutation site of nine (45%) of the 20 CYP1B1 genes was found in the second exon. The pathogenic variant (p.Gly61Glu) was observed in 12 (60%) patients (in the first and second exons); the mutation type of six (50%) of these patients was homozygous. The mutation site of one patient with FOXC1 gene mutation was found to be in the first exon; its pathogenic variant was p.Met400lle. The mutation type in this gene was observed to be heterozygous. Lastly, there were no mutations in the MYOC, FOXC1, and PITX2 genes in combination with the CYP1B1 gene mutation.

Conclusion

The most common cause of PCG in our region is the CYP1B1 gene mutation, and the most frequent pathogenic variant is c.182G > A (p.Gly61Glu). We also determined that the CYP1B1 gene mutation was alone and did not occur with other gene mutations (MYOC, FOXC1, and PITX2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

The authors declare that materials described in the manuscript, including all relevant raw data, will be freely available to any scientist wishing to use them for non-commercial purposes, without breaching participant confidentiality. Moreover, the authors ensure that their datasets are presented in the main manuscript.

References

  1. Badawi AH, Al-Muhaylib AA, Al Owaifeer AM, Al-Essa RS, Al-Shahwan SA (2019) Primary congenital glaucoma: an updated review. Saudi J Ophthalmol 33(4):382–388

    PubMed  PubMed Central  Google Scholar 

  2. Vasiliou V, Gonzalez FJ (2008) Role of CYP1B1 in glaucoma. Annu Rev Pharmacol Toxicol 48:333–358

    CAS  PubMed  Google Scholar 

  3. Sarfarazi M, Stoilov I, Schenkman JB (2003) Genetics and biochemistry of primary congenital glaucoma. Ophthalmol Clin North Am 16(4):543–554

    PubMed  Google Scholar 

  4. Tamçelik N, Atalay E, Bolukbasi S, Çapar O, Ozkok A (2014) Demographic features of subjects with congenital glaucoma. Indian J Ophthalmol 62(5):565–569

    PubMed  PubMed Central  Google Scholar 

  5. Jaffar MS (1988) Care of the infantile glaucoma patient. In: Reineck RD (ed) Ophthalmol Annual. Raven Press, New York, pp 15–37

    Google Scholar 

  6. Al-Rajhi A, Awad A, Badeeb O, Bukhari A, Al-Qahtani S, Mulla I, Jabak M, Selleck C (2003) Causes of blindness in students attending school for the blind in Saudi Arabia. Saudi J Ophthalmol 17:276–280

    Google Scholar 

  7. Rolim H, Cronemberger S, Rangel H, Batista WD, Bastos-Rodrigues L, De Marco L (2016) The role of genetic ancestry in Brazilian patients with primary congenital glaucoma. J Glaucoma 25(1):e24–e28

    PubMed  Google Scholar 

  8. Zhao Y, Sorenson CM, Sheibani N (2015) Cytochrome P450 1B1 and primary congenital glaucoma. J Ophthalmic Vis Res 10(1):60–67

    PubMed  PubMed Central  Google Scholar 

  9. Chen X, Chen Y, Fan BJ, Xia M, Wang L, Sun X (2016) Screening of the LTBP2 gene in 214 Chinese sporadic CYP1B1-negative patients with primary congenital glaucoma. Mol Vis 22:528–535

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Park DY, Lee J, Park I, Choi D, Lee S, Song S, Hwang Y, Hong KY, Nakaoka Y, Makinen T, Kim P, Alitalo K, Hong YK, Koh GY (2014) Lymphatic regulator PROX1 determines Schlemm’s canal integrity and identity. J Clin Invest 124(9):3960–3974

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Sarfarazi M, Stoilov I (2000) Molecular genetics of primary congenital glaucoma. Eye (Lond) 14(Pt 3B):422–428

    Google Scholar 

  12. Lewis CJ, Hedberg-Buenz A, DeLuca AP, Stone EM, Alward WLM, Fingert JH (2017) Primary congenital and developmental glaucomas. Hum Mol Genet 26(R1):R28–R36

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Fassad MR, Amin AK, Morsy HA, Issa NM, Bayoumi NH, El Shafei SA, Kholeif SF (2017) CYP1B1 and myocilin gene mutations in Egyptian patients with primary congenital glaucoma. Egypt J Med Hum Genet 18(3):219–224. https://doi.org/10.1016/j.ejmhg.2016.07.003

    Article  Google Scholar 

  14. Allingham RR, Liu Y, Rhee DJ (2009) The genetics of primary open-angle glaucoma: a review. Exp Eye Res 88(4):837–844

    CAS  PubMed  Google Scholar 

  15. Chang TC, Cavuoto KM (2013) Surgical management in primary congenital glaucoma: four debates. J Ophthalmol 2013:612708

    PubMed  PubMed Central  Google Scholar 

  16. de Silva DJ, Khaw PT, Brookes JL (2011) Long-term outcome of primary congenital glaucoma. J AAPOS 15(2):148–152

    PubMed  Google Scholar 

  17. Bejjani BA, Stockton DW, Lewis RA, Tomey KF, Dueker DK, Jabak M, Astle WF, Lupski JR (2000) Multiple CYP1B1 mutations and incomplete penetrance in an inbred population segregating primary congenital glaucoma suggest frequent de novo events and a dominant modifier locus. Hum Mol Genet 9(3):367–374

    CAS  PubMed  Google Scholar 

  18. Alanazi FF, Song JC, Mousa A, Morales J, Al Shahwan S, Alodhayb S, Al Jadaan I, Al-Turkmani S, Edward DP (2013) Primary and secondary congenital glaucoma: baseline features from a registry at King Khaled Eye Specialist Hospital, Riyadh. Saudi Arab Am J Ophthalmol 155(5):882–889

    Google Scholar 

  19. Papadopoulos M, Cable N, Rahi J, Khaw PT, BIG Eye Study Investigators (2007) The British infantile and childhood glaucoma (BIG) Eye Study. Invest Ophthalmol Vis Sci 48(9):4100–4106

    PubMed  Google Scholar 

  20. Bagiyeva S, Marfany G, Gonzalez-Angulo O, Gonzalez-Duarte R (2007) Mutational screening of CYP1B1 in Turkish PCG families and functional analyses of newly detected mutations. Mol Vis 13:1458–1468

    CAS  PubMed  Google Scholar 

  21. Do T, Shei W, Chau PT, Trang DL, Yong VH, Ng XY, Chen YM, Aung T, Vithana EN (2016) CYP1B1 and MYOC mutations in Vietnamese primary congenital glaucoma patients. J Glaucoma 25(5):e491–e498

    PubMed  Google Scholar 

  22. Bejjani BA, Lewis RA, Tomey KF, Anderson KL, Dueker DK, Jabak M, Astle WF, Otterud B, Leppert M, Lupski JR (1998) Mutations in CYP1B1, the gene for cytochrome P4501B1, are the predominant cause of primary congenital glaucoma in Saudi Arabia. Am J Hum Genet 62(2):325–333

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Plásilová M, Stoilov I, Sarfarazi M, Kádasi L, Feráková E, Ferák V (1999) Identification of a single ancestral CYP1B1 mutation in Slovak gypsies (Roms) affected with primary congenital glaucoma. J Med Genet 36(4):290–294

    PubMed  PubMed Central  Google Scholar 

  24. Stoilov IR, Costa VP, Vasconcellos JP, Melo MB, Betinjane AJ, Carani JC, Oltrogge EV, Sarfarazi M (2002) Molecular genetics of primary congenital glaucoma in Brazil. Invest Ophthalmol Vis Sci 43(6):1820–1827

    PubMed  Google Scholar 

  25. Colomb E, Kaplan J, Garchon HJ (2003) Novel cytochrome P450 1B1 (CYP1B1) mutations in patients with primary congenital glaucoma in France. Hum Mutat 22(6):496

    PubMed  Google Scholar 

  26. Kakiuchi-Matsumoto T, Isashiki Y, Ohba N, Kimura K, Sonoda S, Unoki K (2001) Cytochrome P450 1B1 gene mutations in Japanese patients with primary congenital glaucoma(1). Am J Ophthalmol 131(3):345–350

    CAS  PubMed  Google Scholar 

  27. Huang X, Li M, Guo X, Li S, Xiao X, Jia X, Liu X, Zhang Q (2014) Mutation analysis of seven known glaucoma-associated genes in Chinese patients with glaucoma. Invest Ophthalmol Vis Sci 55(6):3594–3602

    CAS  PubMed  Google Scholar 

  28. Yang M, Guo X, Liu X, Shen H, Jia X, Xiao X, Li S, Fang S, Zhang Q (2009) Investigation of CYP1B1 mutations in Chinese patients with primary congenital glaucoma. Mol Vis 15:432–437

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Ogus A, Bagiyeva S, Saricaoglu S et al (2005) Pattern of CYP1B1 sequence variants in Turkish primary congenital glaucoma patients. Am J Ophthalmol (supplement) 139:48

    Google Scholar 

  30. Zhang L, Savas U, Alexander DL, Jefcoate CR (1998) Characterization of the mouse Cyp1B1 gene. Identification of an enhancer region that directs aryl hydrocarbon receptor-mediated constitutive and induced expression. J Biol Chem 273(9):5174–5183

    CAS  PubMed  Google Scholar 

  31. Abu-Amero KK, Osman EA, Mousa A, Wheeler J, Whigham B, Allingham RR, Hauser MA, Al-Obeidan SA (2011) Screening of CYP1B1 and LTBP2 genes in Saudi families with primary congenital glaucoma: genotype-phenotype correlation. Mol Vis 17:2911–2919

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Panicker SG, Reddy AB, Mandal AK, Ahmed N, Nagarajaram HA, Hasnain SE, Balasubramanian D (2002) Identification of novel mutations causing familial primary congenital glaucoma in Indian pedigrees. Invest Ophthalmol Vis Sci 43(5):1358–1366

    PubMed  Google Scholar 

  33. Chouiter L, Nadifi S (2017) Analysis of CYP1B1 gene mutations in patients with primary congenital glaucoma. J Pediatr Genet 6(4):205–214

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Al-Haddad C, Abdulaal M, Badra R, Barikian A, Noureddine B, Farra C (2016) Genotype/phenotype correlation in primary congenital glaucoma patients in the Lebanese population: a pilot study. Ophthalmic Genet 37(1):31–36

    CAS  PubMed  Google Scholar 

  35. Li N, Zhou Y, Du L, Wei M, Chen X (2011) Overview of cytochrome P450 1B1 gene mutations in patients with primary congenital glaucoma. Exp Eye Res 93(5):572–579

    CAS  PubMed  Google Scholar 

  36. El-Ashry MF, Abd El-Aziz MM, Bhattacharya SS (2007) A clinical and molecular genetic study of Egyptian and Saudi Arabian patients with primary congenital glaucoma (PCG). J Glaucoma 16(1):104–111

    PubMed  Google Scholar 

  37. Chitsazian F, Tusi BK, Elahi E, Saroei HA, Sanati MH, Yazdani S, Pakravan M, Nilforooshan N, Eslami Y, Mehrjerdi MA, Zareei R, Jabbarvand M, Abdolahi A, Lasheyee AR, Etemadi A, Bayat B, Sadeghi M, Banoei MM, Ghafarzadeh B, Rohani MR, Rismanchian A, Thorstenson Y, Sarfarazi M (2007) CYP1B1 mutation profile of Iranian primary congenital glaucoma patients and associated haplotypes. J Mol Diagn 9(3):382–393

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Ng PC, Henikoff S (2003) SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res 31(13):3812–3814

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Alward WL (2000) Axenfeld-Rieger syndrome in the age of molecular genetics. Am J Ophthalmol 130(1):107–115

    CAS  PubMed  Google Scholar 

  40. Nishimura DY, Searby CC, Alward WL, Walton D, Craig JE, Mackey DA, Kawase K, Kanis AB, Patil SR, Stone EM, Sheffield VC (2001) A spectrum of FOXC1 mutations suggests gene dosage as a mechanism for developmental defects of the anterior chamber of the eye. Am J Hum Genet 68(2):364–372

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Kaur K, Reddy AB, Mukhopadhyay A, Mandal AK, Hasnain SE, Ray K, Thomas R, Balasubramanian D, Chakrabarti S (2005) Myocilin gene implicated in primary congenital glaucoma. Clin Genet 67(4):335–340

    CAS  PubMed  Google Scholar 

  42. Chakrabarti S, Kaur K, Rao KN, Mandal AK, Kaur I, Parikh RS, Thomas R (2009) The transcription factor gene FOXC1 exhibits a limited role in primary congenital glaucoma. Invest Ophthalmol Vis Sci 50(1):75–83

    PubMed  Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by SA, AAD, MK, SE, and UK. Genetic analysis was performed by DO. The first draft of the manuscript was written by SA, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Atılım Armağan Demirtaş.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the Institutional and/or national research committee (Ethics Committee of Dicle University Faculty of Medicine, Diyarbakır, Turkey, [decision date: December 05, 2019, No. 09]) and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from legal guardians. Additional informed consent was obtained from all legal guardians for whom identifying information is included in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ava, S., Demirtaş, A.A., Karahan, M. et al. Genetic analysis of patients with primary congenital glaucoma. Int Ophthalmol 41, 2565–2574 (2021). https://doi.org/10.1007/s10792-021-01815-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-021-01815-z

Keywords

Navigation