Skip to main content

Advertisement

Log in

Curcumin potentiates the anti-inflammatory effects of Tehranolide by modulating the STAT3/NF-κB signaling pathway in breast and ovarian cancer cell lines

  • Original Article
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

A Correction to this article was published on 18 January 2024

This article has been updated

Abstract

Background

Studies have demonstrated that natural products, such as curcumin and artemisinin, possess anti-inflammatory effects, which can be beneficial for cancer treatment. Tehranolide, as a novel natural product, has a wide range of biological activities, including anti-cancer effects. However, many properties of Tehranolide, like its anti-inflammatory activity and its combination with curcumin, have not been investigated yet. This investigation examined the anti-inflammatory activity of Tehranolide, either alone or in combination with curcumin, via modulating the NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) and STAT3 (signal transducer and activator of transcription 3) signaling pathways in MDA-MB-231 and SKOV3, breast and ovarian cancer cell lines.

Methods

ELISA-based methods were employed to measure the pro-inflammatory cytokine levels and the NF-κB activity in lipopolysaccharide (LPS)-induced cells. The real-time PCR experiment and Griess test were performed to evaluate inducible nitric oxide synthase (iNOS) gene expression and nitrite levels, respectively. The STAT3 and NF-κB signaling pathways were investigated by Western blotting analysis. Tehranolide's anti-cancer activity was also assessed in a mouse model of breast cancer using the TUNEL (terminal deoxynucleotidyl transferase nick-end labeling) assay.

Results

Tehranolide diminished levels of pro-inflammatory cytokines in cancer cells. Additionally, it suppressed NF-κB DNA binding and STAT3 phosphorylation, reducing iNOS gene expression and nitrite production. Moreover, Western blotting showed that Tehranolide enhanced the inhibitory κB (IκBα) and Bcl-2 (B-cell lymphoma 2)-associated X (BAX) expression, and downregulated the expression of Bcl-2 proteins. Furthermore, the TUNEL assay demonstrated that Tehranolide induced apoptosis in a breast cancer mouse model. Curcumin potentiated all the anti-inflammatory effects of Tehranolide.

Conclusion

This investigation indicated for the first time that Tehranolide, either alone or in combination with curcumin, exerted its anti-inflammatory effects by suppressing NF-κB and STAT3 signaling pathways in SKOV3 and MDA-MB-231 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

The datasets analyzed during this study are available from the corresponding author on reasonable request.

Change history

References

  • Afshari H, Nourbakhsh M, Salehi N, Mahboubi-Rabbani M, Zarghi A, Noori S (2020) STAT3-mediated apoptotic-enhancing function of sclareol against breast cancer cells and cell sensitization to cyclophosphamide. Iran J Pharm Res 19(1):398

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aggarwal BB, Shishodia S, Takada Y, Banerjee S, Newman RA, Bueso-Ramos CE, Price JE (2005) Curcumin suppresses the paclitaxel-induced nuclear factor-κB pathway in breast cancer cells and inhibits lung metastasis of human breast cancer in nude mice. Clin Cancer Res 11(20):7490–7498

    Article  CAS  PubMed  Google Scholar 

  • Aldieri E, Atragene D, Bergandi L, Riganti C, Costamagna C, Bosia A, Ghigo D (2003) Artemisinin inhibits inducible nitric oxide synthase and nuclear factor NF-kB activation. FEBS Lett 552(2–3):141–144

    Article  CAS  PubMed  Google Scholar 

  • Anttila MA, Voutilainen K, Merivalo S, Saarikoski S, Kosma V-M (2007) Prognostic significance of iNOS in epithelial ovarian cancer. Gynecol Oncol 105(1):97–103

    Article  CAS  PubMed  Google Scholar 

  • Atay S, Roberson CD, Gercel-Taylor C, Taylor DD (2013) Ovarian cancer-derived exosomal fibronectin induces pro-inflammatory IL-1β. Exosomes Microvesicles 1:2

    Google Scholar 

  • Augustin Y, Staines HM, Krishna S (2020) Artemisinins as a novel anti-cancer therapy: targeting a global cancer pandemic through drug repurposing. Pharmacol Ther 216:107706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bao B, Prasad AS (2019) Targeting CSC in a most aggressive subtype of breast cancer TNBC. Breast cancer metastasis and drug resistance: challenges and progress, 311–334

  • Bharti AC, Donato N, Aggarwal BB (2003) Curcumin (diferuloylmethane) inhibits constitutive and IL-6-inducible STAT3 phosphorylation in human multiple myeloma cells. J Immunol 171(7):3863–3871

    Article  CAS  PubMed  Google Scholar 

  • Bierie B, Moses HL (2006) TGF-β and cancer. Cytokine Growth Factor Rev 17(1–2):29–40

    Article  CAS  PubMed  Google Scholar 

  • Bolli R, Dawn B, Xuan Y-T (2003) Role of the JAK–STAT pathway in protection against myocardial ischemia/reperfusion injury. Trends Cardiovasc Med 13(2):72–79

    Article  CAS  PubMed  Google Scholar 

  • Browning L, Patel MR, Horvath EB, Tawara K, Jorcyk CL (2018) IL-6 and ovarian cancer: inflammatory cytokines in promotion of metastasis. Cancer Manag Res 10:6685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai Y-Y, Lin W-P, Li A-P, Xu J-Y (2013) Combined effects of curcumin and triptolide on an ovarian cancer cell line. Asian Pac J Cancer Prev 14(7):4267–4271

    Article  PubMed  Google Scholar 

  • Camacho-Barquero L, Villegas I, Sánchez-Calvo JM, Talero E, Sánchez-Fidalgo S, Motilva V, de la Lastra CA (2007) Curcumin, a Curcuma longa constituent, acts on MAPK p38 pathway modulating COX-2 and iNOS expression in chronic experimental colitis. Int Immunopharmacol 7(3):333–342

    Article  CAS  PubMed  Google Scholar 

  • Carpenter RL, Lo H-W (2014) STAT3 target genes relevant to human cancers. Cancers 6(2):897–925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Tang X, Zhi J, Cui Y, Yu H, Tang E, Sun S, Feng J, Chen P (2006) Curcumin protects PC12 cells against 1-methyl-4-phenylpyridinium ion-induced apoptosis by bcl-2-mitochondria-ROS-iNOS pathway. Apoptosis 11(6):943–953

    Article  CAS  PubMed  Google Scholar 

  • Chen SS, Michael A, Butler-Manuel SA (2012) Advances in the treatment of ovarian cancer—a potential role of anti-inflammatory phytochemicals. Discov Med 13(68):7–17

    PubMed  Google Scholar 

  • Chen C, You F, Wu F, Luo Y, Xu H, Liu Y (2020) Antiangiogenesis efficacy of ethanol extract from Amomum tsaoko in ovarian cancer through inducing ER stress to suppress p-STAT3/NF-kB/IL-6 and VEGF loop. Evid-Based Complement Altern Med. https://doi.org/10.1155/2020/2390125

    Article  Google Scholar 

  • Chiu T-L, Su C-C (2009) Curcumin inhibits proliferation and migration by increasing the Bax to Bcl-2 ratio and decreasing NF-κBp65 expression in breast cancer MDA-MB-231 cells. Int J Mol Med 23(4):469–475

    CAS  PubMed  Google Scholar 

  • Chung SS, Aroh C, Vadgama JV (2013) Constitutive activation of STAT3 signaling regulates hTERT and promotes stem cell-like traits in human breast cancer cells. PLoS ONE 8(12):e83971

    Article  PubMed  PubMed Central  Google Scholar 

  • Danforth DN (2021) The role of chronic inflammation in the development of breast cancer. Cancers 13(15):3918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das A (2015) Anticancer effect of antimalarial artemisinin compounds. Ann Med Health Sci Res 5(2):93–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demain AL, Vaishnav P (2011) Natural products for cancer chemotherapy. Microb Biotechnol 4(6):687–699

    Article  PubMed  PubMed Central  Google Scholar 

  • Derosa G, Maffioli P, Simental-Mendía LE, Bo S, Sahebkar A (2016) Effect of curcumin on circulating interleukin-6 concentrations: a systematic review and meta-analysis of randomized controlled trials. Pharmacol Res 111:394–404

    Article  CAS  PubMed  Google Scholar 

  • Fan Y, Mao R, Yang J (2013) NF-κB and STAT3 signaling pathways collaboratively link inflammation to cancer. Protein Cell 4(3):176–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fathi N, Rashidi G, Khodadadi A, Shahi S, Sharifi S (2018) STAT3 and apoptosis challenges in cancer. Int J Biol Macromol 117:993–1001

    Article  CAS  PubMed  Google Scholar 

  • Gaedeke J, Noble NA, Border WA (2004) Curcumin blocks multiple sites of the TGF-β signaling cascade in renal cells. Kidney Int 66(1):112–120

    Article  CAS  PubMed  Google Scholar 

  • Garvey EP, Oplinger JA, Furfine ES, Kiff RJ, Laszlo F, Whittle BJ, Knowles RG (1997) 1400W is a slow, tight binding, and highly selective inhibitor of inducible nitric-oxide synthase in vitro and in vivo. J Biol Chem 272(8):4959–4963

    Article  CAS  PubMed  Google Scholar 

  • Giordano A, Tommonaro G (2019) Curcumin and cancer. Nutrients 11(10):2376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griendling KK, Touyz RM, Zweier JL, Dikalov S, Chilian W, Chen Y-R, Harrison DG, Bhatnagar A (2016) Measurement of reactive oxygen species, reactive nitrogen species, and redox-dependent signaling in the cardiovascular system: a scientific statement from the American Heart Association. Circ Res 119(5):e39–e75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grivennikov SI, Karin M (2010) Dangerous liaisons: STAT3 and NF-κB collaboration and crosstalk in cancer. Cytokine Growth Factor Rev 21(1):11–19

    Article  CAS  PubMed  Google Scholar 

  • Guo Y, Xu F, Lu T, Duan Z, Zhang Z (2012) Interleukin-6 signaling pathway in targeted therapy for cancer. Cancer Treat Rev 38(7):904–910

    Article  CAS  PubMed  Google Scholar 

  • Guo H, Xu Y-M, Ye Z-Q, Yu J-H, Hu X-Y (2013) Curcumin induces cell cycle arrest and apoptosis of prostate cancer cells by regulating the expression of IκBα, c-Jun and androgen receptor. Pharmazie 68(6):431–434

    CAS  PubMed  Google Scholar 

  • Gutiérrez-Venegas G, Torras-Ceballos A, Gómez-Mora JA, Fernández-Rojas B (2017) Luteolin, quercetin, genistein and quercetagetin inhibit the effects of lipopolysaccharide obtained from Porphyromonas gingivalis in H9c2 cardiomyoblasts. Cell Mol Biol Lett 22(1):1–12

    Article  Google Scholar 

  • Harrington BS, Annunziata CM (2019) NF-κB signaling in ovarian cancer. Cancers 11(8):1182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoesel B, Schmid JA (2013) The complexity of NF-κB signaling in inflammation and cancer. Mol Cancer 12(1):1–15

    Article  Google Scholar 

  • Hu Y, Ran M, Wang B, Lin Y, Cheng Y, Zheng S (2020) Co-delivery of docetaxel and curcumin via nanomicelles for enhancing anti-ovarian cancer treatment. Int J Nanomed 15:9703

    Article  CAS  Google Scholar 

  • Huang M, Lu J-J, Ding J (2021) Natural products in cancer therapy: past, present and future. Nat Prod Bioprospecting 11(1):5–13

    Article  Google Scholar 

  • Huang J, Chan WC, Ngai CH, Lok V, Zhang L, Lucero-Prisno DE, Xu W, Zheng Z-J, Elcarte E, Withers M (2022) Worldwide burden, risk factors, and temporal trends of ovarian cancer: a global study. Cancers 14(9):2230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imamura T, Hikita A, Inoue Y (2012) The roles of TGF-β signaling in carcinogenesis and breast cancer metastasis. Breast Cancer 19(2):118–124

    Article  PubMed  Google Scholar 

  • Jiao J, Yang Y, Liu M, Li J, Cui Y, Yin S, Tao J (2018) Artemisinin and Artemisia annua leaves alleviate Eimeria tenella infection by facilitating apoptosis of host cells and suppressing inflammatory response. Veter Parasitol 254:172–177

    Article  CAS  Google Scholar 

  • Johnson DE, O’Keefe RA, Grandis JR (2018) Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat Rev Clinal Oncol 15(4):234–248

    Article  CAS  Google Scholar 

  • Kayl AE, Meyers CA (2006) Side-effects of chemotherapy and quality of life in ovarian and breast cancer patients. Curr Opin Obstet Gynecol 18(1):24–28

    Article  PubMed  Google Scholar 

  • Knüpfer H, Preiß R (2007) Significance of interleukin-6 (IL-6) in breast cancer. Breast Cancer Res Treat 102(2):129–135

    Article  PubMed  Google Scholar 

  • Koeberle A, Werz O (2014) Multi-target approach for natural products in inflammation. Drug Discov Today 19(12):1871–1882

    Article  CAS  PubMed  Google Scholar 

  • Konstat-Korzenny E, Ascencio-Aragón JA, Niezen-Lugo S, Vázquez-López R (2018) Artemisinin and its synthetic derivatives as a possible therapy for cancer. Med Sci 6(1):19

    Google Scholar 

  • Lai HC, Singh NP, Sasaki T (2013) Development of artemisinin compounds for cancer treatment. Investig New Drugs 31(1):230–246

    Article  CAS  Google Scholar 

  • Lee H, Herrmann A, Deng J-H, Kujawski M, Niu G, Li Z, Forman S, Jove R, Pardoll DM, Yu H (2009) Persistently activated Stat3 maintains constitutive NF-κB activity in tumors. Cancer Cell 15(4):283–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li T, Chen H, Wei N, Mei X, Zhang S, Liu D-L, Gao Y, Bai S-F, Liu X-G, Zhou Y-X (2012) Anti-inflammatory and immunomodulatory mechanisms of artemisinin on contact hypersensitivity. Int Immunopharmacol 12(1):144–150

    Article  CAS  PubMed  Google Scholar 

  • Liang W, Liu J, Wu H, Qiao X, Lu X, Liu Y, Zhu H, Ma L (2019) Artemisinin induced reversal of EMT affects the molecular biological activity of ovarian cancer SKOV3 cell lines. Oncol Lett 18(3):3407–3414

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liao W, Ye T, Liu H (2019) Prognostic value of inducible nitric oxide synthase (iNOS) in human cancer: a systematic review and meta-analysis. BioMed Res Intl. https://doi.org/10.1155/2019/6304851

    Article  Google Scholar 

  • Lin YG, Kunnumakkara AB, Nair A, Merritt WM, Han LY, Armaiz-Pena GN, Kamat AA, Spannuth WA, Gershenson DM, Lutgendorf SK (2007) Curcumin inhibits tumor growth and angiogenesis in ovarian carcinoma by targeting the nuclear factor-κB pathway. Clin Cancer Res 13(11):3423–3430

    Article  CAS  PubMed  Google Scholar 

  • Long F, Lin H, Zhang X, Zhang J, Xiao H, Wang T (2020) Atractylenolide-I suppresses tumorigenesis of breast cancer by inhibiting toll-like receptor 4-mediated nuclear factor-Κb signaling pathway. Front Pharmacol 11:598939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo K (2017) Signaling cross talk between TGF-β/Smad and other signaling pathways. Cold Spring Harbor Perspect Biol 9(1):a022137

    Article  Google Scholar 

  • Macciò A, Madeddu C (2012) Inflammation and ovarian cancer. Cytokine 58(2):133–147

    Article  PubMed  Google Scholar 

  • McFarland BC, Hong SW, Rajbhandari R, Twitty GB Jr, Gray GK, Yu H, Benveniste EN, Nozell SE (2013) NF-κB-induced IL-6 ensures STAT3 activation and tumor aggressiveness in glioblastoma. PLoS ONE 8(11):e78728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mercogliano MF, Bruni S, Elizalde PV, Schillaci R (2020) Tumor necrosis factor α blockade: an opportunity to tackle breast cancer. Front Oncol 10:584

    Article  PubMed  PubMed Central  Google Scholar 

  • Mito S, Watanabe K, Harima M, Thandavarayan RA, Veeraveedu PT, Sukumaran V, Suzuki K, Kodama M, Aizawa Y (2011) Curcumin ameliorates cardiac inflammation in rats with autoimmune myocarditis. Biol Pharm Bull 34(7):974–979

    Article  CAS  PubMed  Google Scholar 

  • Mothes J, Busse D, Kofahl B, Wolf J (2015) Sources of dynamic variability in NF-κB signal transduction: A mechanistic model. BioEssays 37(4):452–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakshatri H, Goulet RJ Jr (2002) NF-κB and breast cancer. Curr Probl Cancer 26(5):282–309

    Article  PubMed  Google Scholar 

  • Noori S, Hassan ZM (2012) Tehranolide inhibits proliferation of MCF-7 human breast cancer cells by inducing G0/G1 arrest and apoptosis. Free Radic Biol Med 52(9):1987–1999

    Article  CAS  PubMed  Google Scholar 

  • Noori S, Taghikhani M, Hassan ZM, Allameh A, Mostafaei A (2009) Tehranolide could shift the immune response towards Th1 and modulate the intra-tumor infiltrated T regulatory cells. Iran J Immunol 6(4):216–224

    CAS  PubMed  Google Scholar 

  • Noori S, Taghikhani M, Hassan ZM, Allameha A, Mostafaei A (2010) Tehranolide molecule modulates the immune response, reduce regulatory T cell and inhibits tumor growth in vivo. Mol Immunol 47(7–8):1579–1584

    Article  CAS  PubMed  Google Scholar 

  • Oeckinghaus A, Ghosh S (2009) The NF-κB family of transcription factors and its regulation. Cold Spring Harbor Perspect Biol 1(4):a000034

    Article  Google Scholar 

  • Pan M-H, Lin-Shiau S-Y, Lin J-K (2000) Comparative studies on the suppression of nitric oxide synthase by curcumin and its hydrogenated metabolites through down-regulation of IκB kinase and NFκB activation in macrophages. Biochem Pharmacol 60(11):1665–1676

    Article  CAS  PubMed  Google Scholar 

  • Rébé C, Ghiringhelli F (2020) Interleukin-1β and cancer. Cancers 12(7):1791

    Article  PubMed  PubMed Central  Google Scholar 

  • Rébé C, Végran F, Berger H, Ghiringhelli F (2013) STAT3 activation: a key factor in tumor immunoescape. Jak-Stat 2(1):e23010

    Article  PubMed  PubMed Central  Google Scholar 

  • Reddy L, Odhav B, Bhoola K (2003) Natural products for cancer prevention: a global perspective. Pharmacol Ther 99(1):1–13

    Article  CAS  PubMed  Google Scholar 

  • Roane BM, Arend RC, Birrer MJ (2019) Targeting the transforming growth factor-beta pathway in ovarian cancer. Cancers 11(5):668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serasanambati M, Chilakapati SR (2016) Function of nuclear factor kappa B (NF-kB) in human diseases-a review. South Indian J Biol Sci 2(4):368–387

    Article  Google Scholar 

  • Shi M, Cai Q, Yao L, Mao Y, Ming Y, Ouyang G (2006) Antiproliferation and apoptosis induced by curcumin in human ovarian cancer cells. Cell Biol Int 30(3):221–226

    Article  CAS  PubMed  Google Scholar 

  • Siddiquee AZ, K. and J. Turkson, (2008) STAT3 as a target for inducing apoptosis in solid and hematological tumors. Cell Res 18(2):254–267

    Article  Google Scholar 

  • Sun X, Yan P, Zou C, Wong YK, Shu Y, Lee YM, Zhang C, Yang ND, Wang J, Zhang J (2019) Targeting autophagy enhances the anticancer effect of artemisinin and its derivatives. Med Res Rev 39(6):2172–2193

    Article  PubMed  Google Scholar 

  • Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71(3):209–249

    Article  PubMed  Google Scholar 

  • Tabatabaei Mirakabad FS, Akbarzadeh A, Milani M, Zarghami N, Taheri-Anganeh M, Zeighamian V, Badrzadeh F, Rahmati-Yamchi M (2016) A comparison between the cytotoxic effects of pure curcumin and curcumin-loaded PLGA-PEG nanoparticles on the MCF-7 human breast cancer cell line. Artif Cells Nanomed Biotechnol 44(1):423–430

    Article  CAS  PubMed  Google Scholar 

  • Tak PP, Firestein GS (2001) NF-κB: a key role in inflammatory diseases. J Clin Investig 107(1):7–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tran KQ, Tin AS, Firestone GL (2014) Artemisinin triggers a G1 cell cycle arrest of human Ishikawa endometrial cancer cells and inhibits cyclin dependent kinase-4 promoter activity and expression by disrupting NF-kB transcriptional signaling. Anticancer Drugs 25(3):270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsui K-H, Wu M-Y, Lin L-T, Wen Z-H, Li Y-H, Chu P-Y, Li C-J (2019) Disruption of mitochondrial homeostasis with artemisinin unravels anti-angiogenesis effects via auto-paracrine mechanisms. Theranostics 9(22):6631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wan J, Shan Y, Fan Y, Fan C, Chen S, Sun J, Zhu L, Qin L, Yu M, Lin Z (2016) NF-κB inhibition attenuates LPS-induced TLR4 activation in monocyte cells. Mol Med Rep 14(5):4505–4510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C-Y, Guttridge DC, Mayo MW, Baldwin AS Jr (1999) NF-κB induces expression of the Bcl-2 homologue A1/Bfl-1 to preferentially suppress chemotherapy-induced apoptosis. Mol Cell Biol 19(9):5923–5929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Zhou H, Zheng J, Cheng J, Liu W, Ding G, Wang L, Luo P, Lu Y, Cao H (2006) The antimalarial artemisinin synergizes with antibiotics to protect against lethal live Escherichia coli challenge by decreasing proinflammatory cytokine release. Antimicrob Agents Chemother 50(7):2420–2427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang K, Zhang C, Bao J, Jia X, Liang Y, Wang X, Chen M, Su H, Li P, Wan J-B (2016a) Synergistic chemopreventive effects of curcumin and berberine on human breast cancer cells through induction of apoptosis and autophagic cell death. Sci Rep 6(1):1–14

    Google Scholar 

  • Wang Y, Cao J, Fan Y, Xie Y, Xu Z, Yin Z, Gao L, Wang C (2016b) Artemisinin inhibits monocyte adhesion to HUVECs through the NF-κB and MAPK pathways in vitro. Int J Mol Med 37(6):1567–1575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Li N, Lin D, Zang Y (2017) Curcumin protects against hepatic ischemia/reperfusion induced injury through inhibiting TLR4/NF-κB pathway. Oncotarget 8(39):65414

    Article  PubMed  PubMed Central  Google Scholar 

  • Watson JL, Greenshields A, Hill R, Hilchie A, Lee PW, Giacomantonio CA, Hoskin DW (2010) Curcumin-induced apoptosis in ovarian carcinoma cells is p53-independent and involves p38 mitogen-activated protein kinase activation and downregulation of Bcl-2 and survivin expression and Akt signaling. Mol Carcinog 49(1):13–24

    Article  CAS  PubMed  Google Scholar 

  • White KL, Rider DN, Kalli KR, Knutson KL, Jarvik GP, Goode EL (2011) Genomics of the NF-κB signaling pathway: hypothesized role in ovarian cancer. Cancer Causes Control 22(5):785–801

    Article  PubMed  PubMed Central  Google Scholar 

  • Woods DC, White YA, Dau C, Johnson A (2011) TLR4 activates NF-κB in human ovarian granulosa tumor cells. Biochem Biophys Res Commun 409(4):675–680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu JT, Kral JG (2005) The NF-κB/IκB signaling system: a molecular target in breast cancer therapy. J Surg Res 123(1):158–169

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Zhang W, Shi X, An P, Sun W, Wang Z (2010) Therapeutic effect of artemisinin on lupus nephritis mice and its mechanisms. Acta Biochim Biophys Sin 42(12):916–923

    Article  CAS  PubMed  Google Scholar 

  • Xie Q, Yang Z, Huang X, Zhang Z, Li J, Ju J, Zhang H, Ma J (2019) Ilamycin C induces apoptosis and inhibits migration and invasion in triple-negative breast cancer by suppressing IL-6/STAT3 pathway. J Hematol Oncol 12(1):1–14

    Article  Google Scholar 

  • Xiong Z, Sun G, Zhu C, Cheng B, Zhang C, Ma Y, Dong Y (2010) Artemisinin, an anti-malarial agent, inhibits rat cardiac hypertrophy via inhibition of NF-κB signaling. Eur J Pharmacol 649(1–3):277–284

    Article  CAS  PubMed  Google Scholar 

  • Yan G, Graham K, Lanza-Jacoby S (2013) Curcumin enhances the anticancer effects of trichostatin a in breast cancer cells. Mol Carcinog 52(5):404–411

    Article  CAS  PubMed  Google Scholar 

  • Yang G, Qiu J, Wang D, Tao Y, Song Y, Wang H, Tang J, Wang X, Sun Y, Yang Z (2018) Traditional Chinese medicine curcumin sensitizes human colon cancer to radiation by altering the expression of DNA repair-related genes. Anticancer Res 38(1):131–136

    CAS  PubMed  Google Scholar 

  • Yi M, Li T, Niu M, Luo S, Chu Q, Wu K (2021) Epidemiological trends of women’s cancers from 1990 to 2019 at the global, regional, and national levels: a population-based study. Biomark Res 9(1):1–12

    Article  Google Scholar 

  • Yu H, Pardoll D, Jove R (2009) STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 9(11):798–809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Z, Wan Y, Liu Y, Yang J, Li L, Zhang W (2016) Curcumin induced apoptosis via PI3K/Akt-signalling pathways in SKOV3 cells. Pharm Biol 54(10):2026–2032

    Article  CAS  PubMed  Google Scholar 

  • Yuan X, Li J, Li Y, Deng Z, Zhou L, Long J, Tang Y, Zuo Z, Zhang Y, Xie H (2019) Artemisinin, a potential option to inhibit inflammation and angiogenesis in rosacea. Biomed Pharmacother 117:109181

    Article  CAS  PubMed  Google Scholar 

  • Zhu C, Xiong Z, Chen X, Peng F, Hu X, Chen Y, Wang Q (2012) Artemisinin attenuates lipopolysaccharide-stimulated proinflammatory responses by inhibiting NF-κB pathway in microglia cells. PLoS ONE 7(4):e35125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zinatizadeh MR, Schock B, Chalbatani GM, Zarandi PK, Jalali SA, Miri SR (2021) The nuclear factor kappa B (NF-kB) signaling in cancer development and immune diseases. Genes Dis 8(3):287–297

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was financially supported by Shahid Beheshti University of Medical Sciences grant number 43002915.

Author information

Authors and Affiliations

Authors

Contributions

HA: Wrote the manuscript and interpreted the results. SN: Supervised and designed the study and analyzed the data. AZ: Contributed to the conduction of the experiments.

Corresponding author

Correspondence to Shokoofe Noori.

Ethics declarations

Conflict of interest

Authors have no competing interests.

Ethical approval

The study was conducted in accordance with Animal Care and Use Protocol of Shahid Beheshti University of Medical Sciences (Tehran, Iran).

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afshari, H., Noori, S. & Zarghi, A. Curcumin potentiates the anti-inflammatory effects of Tehranolide by modulating the STAT3/NF-κB signaling pathway in breast and ovarian cancer cell lines. Inflammopharmacol 31, 2541–2555 (2023). https://doi.org/10.1007/s10787-023-01281-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-023-01281-2

Keywords

Navigation