Skip to main content

Advertisement

Log in

Neuromodulation in Parkinson’s disease targeting opioid and cannabinoid receptors, understanding the role of NLRP3 pathway: a novel therapeutic approach

  • Review
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

Parkinson's disease (PD) is a prevalent neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta, resulting in motor and non-motor symptoms. Although levodopa is the primary medication for PD, its long-term use is associated with complications such as dyskinesia and drug resistance, necessitating novel therapeutic approaches. Recent research has highlighted the potential of targeting opioid and cannabinoid receptors as innovative strategies for PD treatment. Modulating opioid transmission, particularly through activating µ (MOR) and δ (DOR) receptors while inhibiting κ (KOR) receptors, shows promise in preventing motor complications and reducing L-DOPA-induced dyskinesia. Opioids also possess neuroprotective properties and play a role in neuroprotection and seizure control. Similar to this, endocannabinoid signalling via CB1 and CB2 receptors influences the basal ganglia and may contribute to PD pathophysiology, making it a potential therapeutic target. In addition to opioid and cannabinoid receptor targeting, the NLRP3 pathway, implicated in neuroinflammation and neurodegeneration, emerges as another potential therapeutic avenue for PD. Recent studies suggest that targeting this pathway holds promise as a therapeutic strategy for PD management. This comprehensive review focuses on neuromodulation and novel therapeutic approaches for PD, specifically highlighting the targeting of opioid and cannabinoid receptors and the NLRP3 pathway. A better understanding of these mechanisms has the potential to enhance the quality of life for PD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

All the data and material are already provided with the manuscript.

References

  • Abascal K, Yarnell E (2004) Alzheimer’s disease: part 2—a botanical treatment plan. Altern Complement Ther 10:67–72

    Google Scholar 

  • Abbott A (2010) Levodopa: the story so far. Nature 466:S6–S7

    CAS  PubMed  Google Scholar 

  • Agid Y, Javoy-Agid F (1985) Peptides and Parkinson’s disease. Trends Neurosci 8:30–35

    CAS  Google Scholar 

  • Aguado T, Palazuelos J, Monory K, Stella N, Cravatt B, Lutz B, Marsicano G, Kokaia Z, Guzmán M, Galve-Roperh I (2006) The endocannabinoid system promotes astroglial differentiation by acting on neural progenitor cells. J Neurosci 26:1551–1561

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ajmone-Cat MA, Bernardo A, Greco A, Minghetti L (2010) Non-steroidal anti-inflammatory drugs and brain inflammation: effects on microglial functions. Pharmaceuticals 3:1949–1965

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alexander GE, Crutcher MD (1990) Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 13:266–271

    CAS  PubMed  Google Scholar 

  • Alexander GE, Delong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9:357–381

    CAS  PubMed  Google Scholar 

  • Aly AE-E, Harmon BT, Padegimas L, Sesenoglu-Laird O, Cooper MJ, Waszczak BL (2019) Intranasal delivery of pGDNF DNA nanoparticles provides neuroprotection in the Rat 6-hydroxydopamine model of Parkinson’s disease. Mol Neurobiol 56:688–701

    CAS  PubMed  Google Scholar 

  • Arcuri L, Novello S, Frassineti M, Mercatelli D, Pisanò CA, Morella I, Fasano S, Journigan BV, Meyer ME, Polgar WE (2018) Anti-Parkinsonian and anti-dyskinetic profiles of two novel potent and selective nociceptin/orphanin FQ receptor agonists. Br J Pharmacol 175:782–796

    CAS  PubMed  PubMed Central  Google Scholar 

  • Axelsen TM, Woldbye DP (2018) Gene therapy for Parkinson’s disease, an update. J Parkinsons Dis 8:195–215

    PubMed  PubMed Central  Google Scholar 

  • Banni S, Di Marzo V (2010) Effect of dietary fat on endocannabinoids and related mediators: consequences on energy homeostasis, inflammation and mood. Mol Nutr Food Res 54:82–92

    CAS  PubMed  Google Scholar 

  • Bartus RT, Weinberg MS, Samulski RJ (2014) Parkinson’s disease gene therapy: success by design meets failure by efficacy. Mol Ther 22:487–497

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baul HS, Manikandan C, Sen D (2019) Cannabinoid receptor as a potential therapeutic target for Parkinson’s disease. Brain Res Bull 146:244–252

    CAS  PubMed  Google Scholar 

  • Bedini A, Cuna E, Baiula M, Spampinato S (2022) Quantitative systems pharmacology and biased agonism at opioid receptors: a potential avenue for improved analgesics. Int J Mol Sci 23:5114

    CAS  PubMed  PubMed Central  Google Scholar 

  • Behl T, Kaur G, Bungau S, Jhanji R, Kumar A, Mehta V, Zengin G, Brata R, Hassan SSU, Fratila O (2020) Distinctive evidence involved in the role of endocannabinoid signalling in parkinson’s disease: a perspective on associated therapeutic interventions. Int J Mol Sci 21:6235

    CAS  PubMed  PubMed Central  Google Scholar 

  • Belluzzi JD, Stein L (1977) Enkephalin may mediate euphoria and drive-reduction reward. Nature 266:556–558

    CAS  PubMed  Google Scholar 

  • Benarroch EE (2012) Endogenous opioid systems: current concepts and clinical correlations. Neurology 79:807–814

    PubMed  Google Scholar 

  • Bezard E, Brotchie JM, Gross CE (2001a) Pathophysiology of levodopa-induced dyskinesia: potential for new therapies. Nat Rev Neurosci 2:577–588

    CAS  PubMed  Google Scholar 

  • Bezard E, Crossman AR, Gross CE, Brotchie JM (2001b) Structures outside the basal ganglia may compensate for dopamine loss in the presymptomatic stages of Parkinson’s disease. FASEB J 15:1092–1094

    CAS  PubMed  Google Scholar 

  • Bezard E, Li Q, Hulme H, Fridjonsdottir E, Nilsson A, Pioli E, Andren PE, Crossman AR (2020) µ opioid receptor agonism for L-Dopa-induced dyskinesia In Parkinson’s disease. J Neurosci 40:6812–6819

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bhattacharjee G, Gohil N, Khambhati K, Mani I, Maurya R, Karapurkar JK, Gohil J, Chu D-T, Vu-Thi H, Alzahrani KJ (2022) Current approaches in Crispr-Cas9 mediated gene editing for biomedical and therapeutic applications. J Control Release 343:703–723

    CAS  PubMed  Google Scholar 

  • Binaschi A, Bregola G, Simonato M (2003) On the role of somatostatin in seizure control: clues from the hippocampus. Rev Neurosci 14:285–301

    CAS  PubMed  Google Scholar 

  • Borlongan CV, Su T-P, Wang Y (2000) Treatment with delta opioid peptide enhances in vitro and in vivo survival of rat dopaminergic neurons. NeuroReport 11:923–926

    CAS  PubMed  Google Scholar 

  • Borlongan CV, Su T-P, Wang Y (2001) Delta opioid peptide augments functional effects and intrastriatal graft survival of rat fetal ventral mesencephalic cells. Cell Transplant 10:53–58

    CAS  PubMed  Google Scholar 

  • Borsche M, Pereira SL, Klein C, Grünewald A (2021) Mitochondria and Parkinson’s disease: clinical, molecular, and translational aspects. J Parkinsons Dis 11:45–60

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bravo-Ferrer I, Cuartero MI, Zarruk JG, Pradillo JM, Hurtado O, Romera VG, Díaz-Alonso J, García-Segura JM, Guzmán M, Lizasoain I (2017) Cannabinoid Type-2 receptor drives neurogenesis and improves functional outcome after stroke. Stroke 48:204–212

    CAS  PubMed  Google Scholar 

  • Buck SH, Deshmukh PP, Burks TF, Yamamura HI (1981) A survey of substance P, somatostatin, and neurotensin levels in aging in the rat and human central nervous system. Neurobiol Aging 2:257–264

    CAS  PubMed  Google Scholar 

  • Bueno MEB, Do Nascimento Neto LI, Terra MB, Barboza NM, Okano AH, Smaili SM (2019) Effectiveness of acute transcranial direct current stimulation on non-motor and motor symptoms in Parkinson’s disease. Neurosci Lett 696:46–51

    CAS  PubMed  Google Scholar 

  • Cai Z, Ratka A (2012) Opioid system and Alzheimer’s disease. NeuroMol Med 14:91–111

    CAS  Google Scholar 

  • Calabresi P, Di Filippo M, Ghiglieri V, Picconi B (2008) Molecular mechanisms underlying levodopa-induced dyskinesia. Mov Disord 23:S570–S579

    PubMed  Google Scholar 

  • Calon F, Grondin R, Morissette M, Goulet M, Blanchet PJ, Di Paolo T, Bedard P (2000a) Molecular basis of levodopa-induced dyskinesias. Ann Neurol 47:S70

    CAS  PubMed  Google Scholar 

  • Calon F, Tahar AH, Blanchet PJ, Morissette M, Grondin R, Goulet M, Doucet J-P, Robertson GS, Nestler E, Di Paolo T (2000b) Dopamine-receptor stimulation: biobehavioural and biochemical consequences. Trends Neurosci 23:S92–S100

    CAS  PubMed  Google Scholar 

  • Calon F, Birdi S, Rajput AH, Hornykiewicz O, Bédard PJ, Di Paolo T (2002) Increase of preproenkephalin mRNA levels in the putamen of Parkinson disease patients with levodopa-induced dyskinesias. J Neuropathol Exp Neurol 61:186–196

    CAS  PubMed  Google Scholar 

  • Cardinale A, Calabrese V, De Iure A, Picconi B (2021) Alpha-synuclein as a prominent actor in the inflammatory synaptopathy of Parkinson’s disease. Int J Mol Sci 22:6517

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carlsson A, Lindqvist M, Magnusson T (1957) 3, 4-Dihydroxyphenylalanine and 5-hydroxytryptophan as reserpine antagonists. Nature 180:1200–1200

    CAS  PubMed  Google Scholar 

  • Carr GD, Fibiger HC, Phillips AG (1989) Conditioned place preference as a measure of drug reward. In: Liebman JM, Cooper SJ (eds) The neuropharmacological basis of reward, pp 264–319

    Google Scholar 

  • Carroll C, Bain P, Teare L, Liu X, Joint C, Wroath C, Parkin S, Fox P, Wright D, Hobart J (2004) Cannabis for dyskinesia in parkinson disease: a randomized double-blind crossover study. Neurology 63:1245–1250

    CAS  PubMed  Google Scholar 

  • Chen T, Li J, Chao D, Sandhu HK, Liao X, Zhao J, Wen G, Xia Y (2014) δ-opioid receptor activation reduces α-synuclein overexpression and oligomer formation induced by MPP+ and/or hypoxia. Exp Neurol 255:127–136

    CAS  PubMed  Google Scholar 

  • Chen K-P, Hua K-F, Tsai F-T, Lin T-Y, Cheng C-Y, Yang D-I, Hsu H-T, Ju T-C (2022) A selective inhibitor of the Nlrp3 inflammasome as a potential therapeutic approach for neuroprotection in a transgenic mouse model of Huntington’s disease. J Neuroinflammation 19:56

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chung YC, Bok E, Huh SH, Park J-Y, Yoon S-H, Kim SR, Kim Y-S, Maeng S, Park SH, Jin BK (2011) Cannabinoid receptor type 1 protects nigrostriatal dopaminergic neurons against MPTP neurotoxicity by inhibiting microglial activation. J Immunol 187:6508–6517

    CAS  PubMed  Google Scholar 

  • Compagnucci C, Di Siena S, Bustamante MB, Di Giacomo D, Di Tommaso M, Maccarrone M, Grimaldi P, Sette C (2013) Type-1 (Cb1) cannabinoid receptor promotes neuronal differentiation and maturation of neural stem cells. PLoS ONE 8:E54271

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cooray R, Gupta V, Suphioglu C (2020) Current aspects of the endocannabinoid system and targeted THC and CBD phytocannabinoids as potential therapeutics for Parkinson’s and Alzheimer’s diseases: a review. Mol Neurobiol 57:4878–4890

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coune PG, Schneider BL, Aebischer P (2012) Parkinson’s disease: gene therapies. Cold Spring Harb Perspect Med 2:A009431

    PubMed  PubMed Central  Google Scholar 

  • Crilly S, Withers SE, Allan SM, Parry-Jones AR, Kasher PR (2021) Revisiting promising preclinical intracerebral hemorrhage studies to highlight repurposable drugs for translation. Int J Stroke 16:123–136

    PubMed  Google Scholar 

  • Crist RC, Berrettini WH (2014) Pharmacogenetics of Oprm1. Pharmacol Biochem Behav 123:25–33

    CAS  PubMed  Google Scholar 

  • Crowley MG, Grant Liska M, Lippert T, Corey S, Borlongan CV (2017) Utilizing delta opioid receptors and peptides for cytoprotection: implications in stroke and other neurological disorders. CNS Neurol Disord Drug Targets (Former Curr Drug Targets CNS Neurol Disord 16:414–424

    CAS  Google Scholar 

  • Cuellar-Herrera M, Velasco AL, Velasco F, Chavez L, Orozco-Suarez S, Armagan G, Turunc E, Bojnik E, Yalcin A, Benyhe S (2012) Mu opioid receptor MRNA expression, binding, and functional coupling to G-proteins in human epileptic hippocampus. Hippocampus 22:122–127

    CAS  PubMed  Google Scholar 

  • Cui J, Wang Y, Dong Q, Wu S, Xiao X, Hu J, Chai Z, Zhang Y (2011) Morphine protects against intracellular amyloid toxicity by inducing estradiol release and upregulation of Hsp70. J Neurosci 31:16227–16240

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Lau LM, Breteler MM (2006) Epidemiology of Parkinson’s disease. Lancet Neurol 5:525–535

    PubMed  Google Scholar 

  • De Petrocellis L, Di Marzo V (2009) Role of endocannabinoids and endovanilloids In Ca2+ signalling. Cell Calcium 45:611–624

    PubMed  Google Scholar 

  • De Rijk MD, Tzourio C, Breteler M, Dartigues J, Amaducci L, López-Pousa S, Manubens-Bertran J, Alperovitch A, Rocca WA (1997) Prevalence of Parkinsonism and Parkinson’s disease in Europe: the Europarkinson Collaborative Study. European Community Concerted Action on the epidemiology of Parkinson’s disease. J Neurol Neurosurg Psychiatry 62:10–15

    PubMed  PubMed Central  Google Scholar 

  • Dehay B, Bourdenx M, Gorry P, Przedborski S, Vila M, Hunot S, Singleton A, Olanow CW, Merchant KM, Bezard E (2015) Targeting α-synuclein for treatment of Parkinson’s disease: mechanistic and therapeutic considerations. Lancet Neurol 14:855–866

    CAS  PubMed  PubMed Central  Google Scholar 

  • Delong MR (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13:281–285

    CAS  PubMed  Google Scholar 

  • Desplats P, Spencer B, Crews L, Pathel P, Morvinski-Friedmann D, Kosberg K, Roberts S, Patrick C, Winner B, Winkler J (2012) α-Synuclein induces alterations in adult neurogenesis in Parkinson disease models via P53-mediated repression of Notch1. J Biol Chem 287:31691–31702

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deverman BE, Ravina BM, Bankiewicz KS, Paul SM, Sah DW (2018) Gene therapy for neurological disorders: progress and prospects. Nat Rev Drug Discov 17:641–659

    CAS  PubMed  Google Scholar 

  • Diakos CI, Charles KA, Mcmillan DC, Clarke SJ (2014) Cancer-related inflammation and treatment effectiveness. Lancet Oncol 15:E493–E503

    PubMed  Google Scholar 

  • Dias DAM (2021) Impact of Nlrp3 inflammasome inhibition on a model of Aβ-induced toxicity. Universidade de Lisboa, Faculdade de Medicina de Lisboa, pp 1–85

    Google Scholar 

  • Dietis N, Rowbotham D, Lambert D (2011) Opioid receptor subtypes: fact or artifact? Br J Anaesth 107:8–18

    CAS  PubMed  Google Scholar 

  • Do VH, Martinez CO, Martinez JL Jr, Derrick BE (2002) Long-term potentiation in direct perforant path projections to the hippocampal Ca3 region in vivo. J Neurophysiol 87:669–678

    PubMed  Google Scholar 

  • Dogra S, Yadav PN (2015) Biased agonism at kappa opioid receptors: implication in pain and mood disorders. Eur J Pharmacol 763:184–190

    CAS  PubMed  Google Scholar 

  • Drolet G, Dumont ÉC, Gosselin I, Kinkead R, Laforest S, Trottier J-F (2001) Role of endogenous opioid system in the regulation of the stress response. Prog Neuro-Psychopharmacol Biol Psychiatry 25:729–741

    CAS  Google Scholar 

  • Dum J, Herz A (1984) Endorphinergic modulation of neural reward systems indicated by behavioural changes. Pharmacol Biochem Behav 21:259–266

    CAS  PubMed  Google Scholar 

  • Eldaief MC, Press DZ, Pascual-Leone A (2013) Transcranial magnetic stimulation in neurology: a review of established and prospective applications. Neurol Clin Pract 3:519–526

    PubMed  PubMed Central  Google Scholar 

  • Emson P, Arregui A, Clement-Jones V, Sandberg BEB, Rossor M (1980) Regional distribution of methionine-enkephalin and substance P-like immunoreactivity in normal human brain and in Huntington’s disease. Brain Res 199:147–160

    CAS  PubMed  Google Scholar 

  • Fagan S, Campbell V (2014) The influence of cannabinoids on generic traits of neurodegeneration. Br J Pharmacol 171:1347–1360

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feng Y, He X, Yang Y, Chao D, Lazarus LH, Xia Y (2012) Current research on opioid receptor function. Curr Drug Targets 13:230–246

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreira FF, Ribeiro FF, Rodrigues RS, Sebastião AM, Xapelli S (2018) Brain-derived neurotrophic factor (Bdnf) role in cannabinoid-mediated neurogenesis. Front Cell Neurosci 12:441

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fisher A (2008) Cholinergic treatments with emphasis on M1 muscarinic agonists as potential disease-modifying agents for Alzheimer’s disease. Neurotherapeutics 5:433–442

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fonseca B, Costa M, Almada M, Correia-Da-Silva G, Teixeira N (2013) Endogenous cannabinoids revisited: a biochemistry perspective. Prostaglandins Other Lipid Mediat 102:13–30

    PubMed  Google Scholar 

  • Gale JT, Amirnovin R, Williams ZM, Flaherty AW, Eskandar EN (2008) From symphony to cacophony: pathophysiology of the human basal ganglia in Parkinson disease. Neurosci Biobehav Rev 32:378–387

    CAS  PubMed  Google Scholar 

  • Gao C-J, Niu L, Ren P-C, Wang W, Zhu C, Li Y-Q, Chai W, Sun X-D (2012) Hypoxic preconditioning attenuates global cerebral ischemic injury following asphyxial cardiac arrest through regulation of delta opioid receptor system. Neuroscience 202:352–362

    CAS  PubMed  Google Scholar 

  • García-Ovejero D, Arévalo-Martín Á, Navarro-Galve B, Pinteaux E, Molina-Holgado E, Molina-Holgado F (2013) Neuroimmmune interactions of cannabinoids in neurogenesis: focus on interleukin-1β (Il-1β) signalling. Biochem Soc Trans 41:1577–1582

    PubMed  Google Scholar 

  • Garrido-Mesa N, Zarzuelo A, Gálvez J (2013) Minocycline: far beyond an antibiotic. Br J Pharmacol 169:337–352

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gerrits MA, Lesscher HB, Van Ree JM (2003) Drug dependence and the endogenous opioid system. Eur Neuropsychopharmacol 13:424–434

    CAS  PubMed  Google Scholar 

  • Giuliano C, Francavilla M, Ongari G, Petese A, Ghezzi C, Rossini N, Blandini F, Cerri S (2021) Neuroprotective and symptomatic effects of cannabidiol in an animal model of Parkinson’s disease. Int J Mol Sci 22:8920

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goncalves MB, Suetterlin P, Yip P, Molina-Holgado F, Walker DJ, Oudin MJ, Zentar MP, Pollard S, Yáñez-Muñoz RJ, Williams G (2008) A diacylglycerol lipase-Cb2 cannabinoid pathway regulates adult subventricular zone neurogenesis in an age-dependent manner. Mol Cell Neurosci 38:526–536

    CAS  PubMed  Google Scholar 

  • Grigoletto J, Schechter M, Sharon R (2022) Loss of corticostriatal mu-opioid receptors in α-synuclein transgenic mouse brains. Life 12:63

    CAS  PubMed  PubMed Central  Google Scholar 

  • Günther T, Dasgupta P, Mann A, Miess E, Kliewer A, Fritzwanker S, Steinborn R, Schulz S (2018) Targeting multiple opioid receptors-improved analgesics with reduced side effects? Br J Pharmacol 175:2857–2868

    PubMed  Google Scholar 

  • Hammers A, Asselin M-C, Hinz R, Kitchen I, Brooks DJ, Duncan JS, Koepp MJ (2007) Upregulation of opioid receptor binding following spontaneous epileptic seizures. Brain 130:1009–1016

    PubMed  Google Scholar 

  • Haque ME, Akther M, Jakaria M, Kim IS, Azam S, Choi DK (2020) Targeting the microglial NLRP3 inflammasome and its role in Parkinson’s disease. Mov Disord 35:20–33

    CAS  PubMed  Google Scholar 

  • He AT, Liu J, Li F, Yang BB (2021) Targeting circular RNAS as a therapeutic approach: current strategies and challenges. Signal Transduct Target Ther 6:185

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heidari A, Yazdanpanah N, Rezaei N (2022) The role of Toll-like receptors and neuroinflammation in Parkinson’s disease. J Neuroinflammation 19:1–21

    Google Scholar 

  • Henry B, Fox SH, Crossman AR, Brotchie JM (2001) μ-and δ-opioid receptor antagonists reduce levodopa-induced dyskinesia in the MPTP-lesioned primate model of Parkinson’s disease. Exp Neurol 171:139–146

    CAS  PubMed  Google Scholar 

  • Herz A (1997) Endogenous opioid systems and alcohol addiction. Psychopharmacology 129:99–111

    CAS  PubMed  Google Scholar 

  • Hill M, Hille C, Brotchie J (2000) D-opioid receptor agonists as a therapeutic approach in Parkinson’s disease. Drug News Perspect 13:261–268

    CAS  PubMed  Google Scholar 

  • Hillard CJ, Muthian S, Kearn CS (1999) Effects of Cb1 cannabinoid receptor activation on cerebellar granule cell nitric oxide synthase activity. FEBS Lett 459:277–281

    CAS  PubMed  Google Scholar 

  • Hirsch EC, Hunot S (2009) Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol 8:382–397

    CAS  PubMed  Google Scholar 

  • Hitti FL, Yang AI, Gonzalez-Alegre P, Baltuch GH (2019) Human gene therapy approaches for the treatment of Parkinson’s disease: an overview of current and completed clinical trials. Parkinsonism Relat Disord 66:16–24

    PubMed  Google Scholar 

  • Hjelmstad GO, Fields HL (2001) Kappa opioid receptor inhibition of glutamatergic transmission in the nucleus accumbens shell. J Neurophysiol 85:1153–1158

    CAS  PubMed  Google Scholar 

  • Horgusluoglu E, Nudelman K, Nho K, Saykin AJ (2017) Adult neurogenesis and neurodegenerative diseases: a systems biology perspective. Am J Med Genet B Neuropsychiatr Genet 174:93–112

    CAS  PubMed  Google Scholar 

  • Hornyewicz O, Birkmayer W, Der L (1961) 3, 4 dioxyphennyl alanin (L-Dopa): Effekt bei der Parkinson-Akineses. Wien Klin Wschr 73:787

    Google Scholar 

  • Huang JZ, Ren Y, Xu Y, Chen T, Xia TC, Li ZR, Zhao JN, Hua F, Sheng SY, Xia Y (2018) The delta-opioid receptor and Parkinson’s disease. CNS Neurosci Ther 24:1089–1099

    PubMed  PubMed Central  Google Scholar 

  • Iannotti FA, Di Marzo V, Petrosino S (2016) Endocannabinoids and endocannabinoid-related mediators: targets, metabolism and role in neurological disorders. Prog Lipid Res 62:107–128

    CAS  PubMed  Google Scholar 

  • Jarraya B, Boulet S, Scott Ralph G, Jan C, Bonvento G, Azzouz M, Miskin JE, Shin M, Delzescaux T, Drouot X (2009) Dopamine gene therapy for Parkinson’s disease in a nonhuman primate without associated dyskinesia. Sci Transl Med 1:2ra4

    PubMed  Google Scholar 

  • Jiang W, Zhang Y, Xiao L, Van Cleemput J, Ji S-P, Bai G, Zhang X (2005) Cannabinoids promote embryonic and adult hippocampus neurogenesis and produce anxiolytic-and antidepressant-like effects. J Clin Investig 115:3104–3116

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang H, He H, Chen Y, Huang W, Cheng J, Ye J, Wang A, Tao J, Wang C, Liu Q (2017) Identification of a selective and direct NLRP3 inhibitor to treat inflammatory disorders. J Exp Med 214:3219–3238

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kalia LV, Brotchie JM, Fox SH (2013) Novel nondopaminergic targets for motor features of Parkinson’s disease: review of recent trials. Mov Disord 28:131–144

    CAS  PubMed  Google Scholar 

  • Karimian A, Gorjizadeh N, Alemi F, Asemi Z, Azizian K, Soleimanpour J, Malakouti F, Targhazeh N, Majidinia M, Yousefi B (2020) Crispr/Cas9 novel therapeutic road for the treatment of neurodegenerative diseases. Life Sci 259:118165

    CAS  PubMed  Google Scholar 

  • Kim SH, Won SJ, Mao XO, Ledent C, Jin K, Greenberg DA (2006) Role for neuronal nitric-oxide synthase in cannabinoid-induced neurogenesis. J Pharmacol Exp Ther 319:150–154

    CAS  PubMed  Google Scholar 

  • Kip EC, Parr-Brownlie LC (2022) Reducing neuroinflammation via therapeutic compounds and lifestyle to prevent or delay progression of Parkinson’s disease. Prevention of neuroinflammation in Parkinson’s disease. Ageing Res Rev 78:101618

    CAS  PubMed  Google Scholar 

  • Klein MO, Battagello DS, Cardoso AR, Hauser DN, Bittencourt JC, Correa RG (2019) Dopamine: functions, signalling, and association with neurological diseases. Cell Mol Neurobiol 39:31–59

    PubMed  Google Scholar 

  • Klein S (2020) Alpha-synuclein promotes dopaminergic neuron death in Parkinson’s disease through microglial and NLRP3 activation. USURJ Univ Sask Undergr Res J 6:1–11

    Google Scholar 

  • Kordower JH, Bjorklund A (2013) Trophic factor gene therapy for Parkinson’s disease. Mov Disord 28:96–109

    CAS  PubMed  Google Scholar 

  • Lee JH, Kim HJ, Kim JU, Yook TH, Kim KH, Lee JY, Yang G (2021) A novel treatment strategy by natural products in NLRP3 inflammasome-mediated neuroinflammation in Alzheimer’s and Parkinson’s disease. Int J Mol Sci 22:1324

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leibowitz SF, Wortley KE (2004) Hypothalamic control of energy balance: different peptides, different functions. Peptides 25:473–504

    CAS  PubMed  Google Scholar 

  • Lev N, Melamed E, Offen D (2003) Apoptosis and Parkinson’s disease. Prog Neuro Psychopharmacol Biol Psychiatry 27:245–250

    CAS  Google Scholar 

  • Lewitt PA, Rezai AR, Leehey MA, Ojemann SG, Flaherty AW, Eskandar EN, Kostyk SK, Thomas K, Sarkar A, Siddiqui MS (2011) Aav2-Gad gene therapy for advanced Parkinson’s disease: a double-blind, sham-surgery controlled, randomised trial. Lancet Neurol 10:309–319

    CAS  PubMed  Google Scholar 

  • Little JP, Villanueva EB, Klegeris A (2011) Therapeutic potential of cannabinoids in the treatment of neuroinflammation associated with Parkinson’s disease. Mini Rev Med Chem 11:582–590

    CAS  PubMed  Google Scholar 

  • Llorens-Cortes C, Javoy-Agid F, Agid Y, Taquet H, Schwartz J (1984) Enkephalinergic markers in substantia nigra and caudate nucleus from Parkinsonian subjects. J Neurochem 43:874–877

    CAS  PubMed  Google Scholar 

  • Loacker S, Sayyah M, Wittmann W, Herzog H, Schwarzer C (2007) Endogenous dynorphin in epileptogenesis and epilepsy: anticonvulsant net effect via kappa opioid receptors. Brain 130:1017–1028

    PubMed  Google Scholar 

  • Lowe H, Toyang N, Steele B, Bryant J, Ngwa W (2021) The endocannabinoid system: a potential target for the treatment of various diseases. Int J Mol Sci 22:9472

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu M, Ueno S (2015) Deep transcranial magnetic stimulation using figure-of-eight and halo coils. IEEE Trans Magn 51:1–4

    Google Scholar 

  • Lu H-C, Mackie K (2016) An introduction to the endogenous cannabinoid system. Biol Psychiatry 79:516–525

    CAS  PubMed  Google Scholar 

  • Lunzer MM, Portoghese PS (2007) Selectivity of δ-and κ-opioid ligands depends on the route of central administration in mice. J Pharmacol Exp Ther 322:166–171

    CAS  PubMed  Google Scholar 

  • Lurie DI (2018) An integrative approach to neuroinflammation in psychiatric disorders and neuropathic pain. J Exp Neurosci 12:1179069518793639

    PubMed  PubMed Central  Google Scholar 

  • Maison P, Walker DJ, Walsh FS, Williams G, Doherty P (2009) Bdnf regulates neuronal sensitivity to endocannabinoids. Neurosci Lett 467:90–94

    CAS  PubMed  Google Scholar 

  • Maiti P, Manna J, Dunbar GL (2017) Current understanding of the molecular mechanisms in Parkinson’s disease: targets for potential treatments. Transl Neurodegener 6:1–35

    Google Scholar 

  • Manenti R, Brambilla M, Benussi A, Rosini S, Cobelli C, Ferrari C, Petesi M, Orizio I, Padovani A, Borroni B (2016) Mild cognitive impairment in Parkinson’s disease is improved by transcranial direct current stimulation combined with physical therapy. Mov Disord 31:715–724

    PubMed  Google Scholar 

  • Mansour A, Khachaturian H, Lewis ME, Akil H, Watson SJ (1988) Anatomy of CNS opioid receptors. Trends Neurosci 11:308–314

    CAS  PubMed  Google Scholar 

  • Marchetti B, Abbracchio MP (2005) To be or not to be (inflamed)—is that the question in anti-inflammatory drug therapy of neurodegenerative disorders? Trends Pharmacol Sci 26:517–525

    CAS  PubMed  Google Scholar 

  • Marxreiter F, Regensburger M, Winkler J (2013) Adult neurogenesis in Parkinson’s disease. Cell Mol Life Sci 70:459–473

    CAS  PubMed  Google Scholar 

  • Mckendrick R, Parasuraman R, Ayaz H (2015) Wearable functional near infrared spectroscopy (fNIRS) and transcranial direct current stimulation (tDCS): expanding vistas for neurocognitive augmentation. Front Syst Neurosci 9:27

    PubMed  PubMed Central  Google Scholar 

  • Mcnaught KSP, Perl DP, Brownell AL, Olanow CW (2004) Systemic exposure to proteasome inhibitors causes a progressive model of Parkinson’s disease. Ann Neurol 56:149–162

    CAS  PubMed  Google Scholar 

  • Mercatelli D, Bezard E, Eleopra R, Zaveri NT, Morari M (2020) Managing Parkinson’s disease: moving ON with NOP. Br J Pharmacol 177:28–47

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mercatelli D, Pisanò CA, Novello S, Morari M (2019) NOP receptor ligands and Parkinson’s disease. The Nociceptin/Orphanin FQ Peptide Receptor, pp 213–232

    Google Scholar 

  • Micale V, Mazzola C, Drago F (2007) Endocannabinoids and neurodegenerative diseases. Pharmacol Res 56:382–392

    CAS  PubMed  Google Scholar 

  • Mika J, Obara I, Przewlocka B (2011) The role of nociceptin and dynorphin in chronic pain: implications of neuro-glial interaction. Neuropeptides 45:247–261

    CAS  PubMed  Google Scholar 

  • More SV, Choi D-K (2015) Promising cannabinoid-based therapies for Parkinson’s disease: motor symptoms to neuroprotection. Mol Neurodegener 10:1–26

    CAS  Google Scholar 

  • Morera-Herreras T, Miguelez C, Aristieta A, Torrecilla M, Ruiz-Ortega JA, Ugedo L (2016) Cannabinoids and motor control of the basal ganglia: therapeutic potential in movement disorders. In: Meccariello R, Chianese R (eds) Cannabinoids in health and disease, pp 59–92

    Google Scholar 

  • Motyl J, Przykaza Ł, Boguszewski PM, Kosson P, Strosznajder JB (2018) Pramipexole and Fingolimod exert neuroprotection in a mouse model of Parkinson’s disease by activation of sphingosine kinase 1 and Akt kinase. Neuropharmacology 135:139–150

    CAS  PubMed  Google Scholar 

  • Mucha RF, Herz A (1985) Motivational properties of Kappa and Mu opioid receptor agonists studied with place and taste preference conditioning. Psychopharmacology 86:274–280

    CAS  PubMed  Google Scholar 

  • Murataeva N, Straiker A, Mackie K (2014) Parsing the players: 2-arachidonoylglycerol synthesis and degradation in the CNS. Br J Pharmacol 171:1379–1391

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mwanza C, Chen Z, Zhang Q, Chen S, Wang W, Deng H (2016) Simultaneous HPLC-APCI-MS/MS quantification of endogenous cannabinoids and glucocorticoids in hair. J Chromatogr B 1028:1–10

    CAS  Google Scholar 

  • Nguyen LTN, Nguyen HD, Kim YJ, Nguyen TT, Lai TT, Lee YK, Ma H-I, Kim YE (2022) Role of NLRP3 inflammasome in Parkinson’s disease and therapeutic considerations. J Parkinson’s Dis 12:2117–2133

    CAS  Google Scholar 

  • Nieto MM, Guen S, Kieffer B, Roques B, Noble F (2005) Physiological control of emotion-related behaviours by endogenous enkephalins involves essentially the delta opioid receptors. Neuroscience 135:305–313

    CAS  PubMed  Google Scholar 

  • Ohno-Shosaku T, Kano M (2014) Endocannabinoid-mediated retrograde modulation of synaptic transmission. Curr Opin Neurobiol 29:1–8

    CAS  PubMed  Google Scholar 

  • Okun MS (2012) Deep-brain stimulation for Parkinson’s disease. N Engl J Med 367:1529–1538

    CAS  PubMed  Google Scholar 

  • O’sullivan SS, Williams DR, Gallagher DA, Massey LA, Silveira-Moriyama L, Lees AJ (2008) Nonmotor symptoms as presenting complaints in Parkinson’s disease: a clinicopathological study. Mov Disord 23:101–106

    PubMed  Google Scholar 

  • Palazuelos J, Aguado T, Egia A, Mechoulam R, Guzmán M, Galve-Roperh I, Palazuelos J, Aguado T, Egia A, Mechoulam R (2006) Non-psychoactive CB2 cannabinoid agonists stimulate neural progenitor proliferation. FASEB J 20:2405–2407

    CAS  PubMed  Google Scholar 

  • Palazuelos J, Ortega Z, Díaz-Alonso J, Guzmán M, Galve-Roperh I (2012) CB2 Cannabinoid receptors promote neural progenitor cell proliferation via mTORC1 signalling. J Biol Chem 287:1198–1209

    CAS  PubMed  Google Scholar 

  • Panuccio G, Curia G, Colosimo A, Cruccu G, Avoli M (2009) Epileptiform synchronization in the cingulate cortex. Epilepsia 50:521–536

    CAS  PubMed  Google Scholar 

  • Parkinson Study Group (1996) Impact of deprenyl and tocopherol treatment on Parkinson’s disease in DATATOP patients requiring levodopa. Ann Neurol 39:37–45

    Google Scholar 

  • Parkinson Study Group (2004) Levodopa and the progression of Parkinson’s disease. N Engl J Med 351:2498–2508

    Google Scholar 

  • Patil P, Chaudhari P, Sahu M, Duragkar N (2012) Review article on gene therapy. Res J Pharmacol Pharmacodyn 4:77–83

    CAS  Google Scholar 

  • Pena-Altamira E, Prati F, Massenzio F, Virgili M, Contestabile A, Bolognesi ML, Monti B (2016) Changing paradigm to target microglia in neurodegenerative diseases: from anti-inflammatory strategy to active immunomodulation. Expert Opin Ther Targets 20:627–640

    CAS  PubMed  Google Scholar 

  • Penney J, Young A (1983) Speculations on the functional anatomy of basal ganglia disorders. Annu Rev Neurosci 6:73–94

    PubMed  Google Scholar 

  • Perry G, Friedman R, Shaw G, Chau V (1987) Ubiquitin is detected in neurofibrillary tangles and senile plaque neurites of Alzheimer disease brains. Proc Natl Acad Sci 84:3033–3036

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pike AF, Szabò I, Veerhuis R, Bubacco L (2022) The potential convergence of NLRP3 inflammasome, potassium, and dopamine mechanisms in Parkinson’s disease. NPJ Parkinson’s Dis 8:32

    CAS  Google Scholar 

  • Poon C, Irwin M (2009) Anaesthesia for deep brain stimulation and in patients with implanted neurostimulator devices. Br J Anaesth 103:152–165

    CAS  PubMed  Google Scholar 

  • Postuma R, Romenets SR, Rakheja R (2012) Physician guide non-motor symptoms of Parkinson’s disease. Depression 19:20

    Google Scholar 

  • Pradhan AA, Befort K, Nozaki C, Gavériaux-Ruff C, Kieffer BL (2011) The delta opioid receptor: an evolving target for the treatment of brain disorders. Trends Pharmacol Sci 32:581–590

    CAS  PubMed  PubMed Central  Google Scholar 

  • Przewłocki R, Machelska H, Przewłocka B (1993) Inhibition of nitric oxide synthase enhances morphine antinociception in the rat spinal cord. Life Sci 53:PI1–PI5

    Google Scholar 

  • Qian L, Flood PM, Hong J-S (2010) Neuroinflammation is a key player in Parkinson’s disease and a prime target for therapy. J Neural Transm 117:971–979

    CAS  PubMed  PubMed Central  Google Scholar 

  • Quinn N (1995) Fortnightly review: drug treatment of Parkinson’s disease. BMJ 310:575–579

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman MU, Bilal M, Shah JA, Kaushik A, Teissedre P-L, Kujawska M (2022) Crispr-Cas9-based technology and its relevance to gene editing in Parkinson’s disease. Pharmaceutics 14:1252

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raj K, Gupta G, Singh S (2021) L-theanine ameliorates motor deficit, mitochondrial dysfunction, and neurodegeneration against chronic tramadol induced rats model of Parkinson’s disease. Drug Chem Toxicol 45:2097–2108

    PubMed  Google Scholar 

  • Rao P, Knaus EE (2008) Evolution of nonsteroidal anti-inflammatory drugs (Nsaids): cyclooxygenase (Cox) inhibition and beyond. J Pharm Pharm Sci 11:81s–110s

    PubMed  Google Scholar 

  • Rascol O, Brooks DJ, Korczyn AD, De Deyn PP, Clarke CE, Lang AE (2000) A five-year study of the incidence of dyskinesia in patients with early Parkinson’s disease who were treated with ropinirole or levodopa. N Engl J Med 342:1484–1491

    CAS  PubMed  Google Scholar 

  • Rees K, Stowe R, Patel S, Ives N, Breen K, Clarke CE, Ben-Shlomo Y (2011) Non-steroidal anti-inflammatory drugs as disease-modifying agents for Parkinson’s disease: evidence from observational studies. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD008454.pub2

    Article  PubMed  Google Scholar 

  • Ribeiro FM, Paquet M, Cregan SP, Ferguson SSG (2010) Group I metabotropic glutamate receptor signalling and its implication in neurological disease. CNS Neurol Disord Drug Targets (Former Curr Drug Targets CNS Neurol Disord) 9:574–595

    CAS  Google Scholar 

  • Rinne J, Säkö E, Paljärvi L, Mölsä P, Rinne U (1988) A comparison of brain choline acetyltransferase activity in Alzheimer’s disease, multi-infarct dementia, and combined dementia. J Neural Transm 73:121–128

    CAS  PubMed  Google Scholar 

  • Rossi S, Bernardi G, Centonze D (2010) The Endocannabinoid system in the inflammatory and neurodegenerative processes of multiple sclerosis and of amyotrophic lateral sclerosis. Exp Neurol 224:92–102

    CAS  PubMed  Google Scholar 

  • Sagar SM, Beal MF, Marshall PE, Landis DM, Martin JB (1984) Implications of neuropeptides in neurological diseases. Peptides 5:255–262

    CAS  PubMed  Google Scholar 

  • Samadi P, Bédard PJ, Rouillard C (2006) Opioids and motor complications in Parkinson’s disease. Trends Pharmacol Sci 27:512–517

    CAS  PubMed  Google Scholar 

  • Sandyk R (1985) The endogenous opioid system in neurological disorders of the basal ganglia. Life Sci 37:1655–1663

    CAS  PubMed  Google Scholar 

  • Santos NAG, Martins NM, Sisti FM, Fernandes LS, Ferreira RS, Queiroz RHC, Santos AC (2015) The neuroprotection of cannabidiol against MPP+-induced toxicity in PC12 cells involves trkA receptors, upregulation of axonal and synaptic proteins, neuritogenesis, and might be relevant to Parkinson’s disease. Toxicol In Vitro 30:231–240

    CAS  PubMed  Google Scholar 

  • Sauriyal DS, Jaggi AS, Singh N (2011) Extending pharmacological spectrum of opioids beyond analgesia: multifunctional aspects in different pathophysiological states. Neuropeptides 45:175–188

    CAS  PubMed  Google Scholar 

  • Schapira AH, Bezard E, Brotchie J, Calon F, Collingridge GL, Ferger B, Hengerer B, Hirsch E, Jenner P, Novère NL (2006) Novel pharmacological targets for the treatment of Parkinson’s disease. Nat Rev Drug Discov 5:845–854

    CAS  PubMed  Google Scholar 

  • Scharfman H, Goodman J, Macleod A, Phani S, Antonelli C, Croll S (2005) Increased neurogenesis and the ectopic granule cells after intrahippocampal BDNF infusion in adult rats. Exp Neurol 192:348–356

    CAS  PubMed  Google Scholar 

  • Schwaid AG, Spencer KB (2020) Strategies for targeting the NLRP3 inflammasome in the clinical and preclinical space. J Med Chem 64:101–122

    PubMed  Google Scholar 

  • Sheng S, Huang J, Ren Y, Zhi F, Tian X, Wen G, Ding G, Xia TC, Hua F, Xia Y (2018) Neuroprotection against hypoxic/ischemic injury: δ-opioid receptors and BDNF-TRKB pathway. Cell Physiol Biochem 47:302–315

    CAS  PubMed  Google Scholar 

  • Si X-L, Fang Y-J, Li L-F, Gu L-Y, Yin X-Z, Yan Y-P, Pu J-L, Zhang B-R (2021) From inflammasome to parkinson’s disease: does the NLRP3 inflammasome facilitate exosome secretion and exosomal alpha-synuclein transmission in parkinson’s disease? Exp Neurol 336:113525

    CAS  PubMed  Google Scholar 

  • Sigg DC, Coles JA Jr, Oeltgen PR, Iaizzo PA (2002) Role of δ-opioid receptor agonists on infarct size reduction in swine. Am J Physiol-Heart Circ Physiol 282:H1953–H1960

    CAS  PubMed  Google Scholar 

  • Silkis I (2007) The role of opioid receptor agonists and antagonists in the treatment of Parkinson’s disease. Neurochem J 1:281–287

    Google Scholar 

  • Simonato M, Bennett J, Boulis NM, Castro MG, Fink DJ, Goins WF, Gray SJ, Lowenstein PR, Vandenberghe LH, Wilson TJ (2013) Progress in gene therapy for neurological disorders. Nat Rev Neurol 9:277–291

    CAS  PubMed  PubMed Central  Google Scholar 

  • Skyt I, Lunde SJ, Baastrup C, Svensson P, Jensen TS, Vase L (2020) Neurotransmitter systems involved in placebo and nocebo effects in healthy participants and patients with chronic pain: a systematic review. Pain 161:11–23

    PubMed  Google Scholar 

  • Solbrig MV, Adrian R, Baratta J, Lauterborn JC, Koob GF (2006) Kappa opioid control of seizures produced by a virus in an animal model. Brain 129:642–654

    PubMed  Google Scholar 

  • Sood A, Preeti K, Fernandes V, Khatri DK, Singh SB (2021) Glia: a major player in glutamate-gaba dysregulation-mediated neurodegeneration. J Neurosci Res 99:3148–3189

    CAS  PubMed  Google Scholar 

  • Srinivasan E, Chandrasekhar G, Chandrasekar P, Anbarasu K, Vickram A, Karunakaran R, Rajasekaran R, Srikumar P (2021) Alpha-synuclein aggregation in Parkinson’s disease. Front Med 8:736978

    CAS  Google Scholar 

  • Stumm RK, Zhou C, Schulz S, Höllt V (2004) Neuronal types expressing μ-and δ-opioid receptor MRNA in the rat hippocampal formation. J Comp Neurol 469:107–118

    CAS  PubMed  Google Scholar 

  • Takahashi M, Suzuki M, Fukuoka M, Fujikake N, Watanabe S, Murata M, Wada K, Nagai Y, Hohjoh H (2015) Normalization of overexpressed α-synuclein causing Parkinson’s disease by a moderate gene silencing with rna interference. Mol Ther Nucleic Acids 4:E241

    PubMed  Google Scholar 

  • Tian X, Hua F, Sandhu HK, Chao D, Balboni G, Salvadori S, He X, Xia Y (2013) Effect of δ-opioid receptor activation on BDNF-TRKB vs. TNF-α in the mouse cortex exposed to prolonged hypoxia. Int J Mol Sci 14:15959–15976

    PubMed  PubMed Central  Google Scholar 

  • Toll L, Cippitelli A, Ozawa A (2021) The NOP receptor system in neurological and psychiatric disorders: discrepancies, peculiarities and clinical progress in developing targeted therapies. CNS Drugs 35:591–607

    CAS  PubMed  PubMed Central  Google Scholar 

  • Torkildsen Ø, Myhr KM, Bø L (2016) Disease-modifying treatments for multiple sclerosis—a review of approved medications. Eur J Neurol 23:18–27

    PubMed  Google Scholar 

  • Tsuboi K, Uyama T, Okamoto Y, Ueda N (2018) Endocannabinoids and related N-acylethanolamines: biological activities and metabolism. Inflamm Regen 38:1–10

    Google Scholar 

  • Twelves D, Perkins KS, Counsell C (2003) Systematic review of incidence studies of Parkinson’s disease. Mov Disord 18:19–31

    PubMed  Google Scholar 

  • Ubaldi M, Cannella N, Borruto AM, Petrella M, Micioni Di Bonaventura MV, Soverchia L, Stopponi S, Weiss F, Cifani C, Ciccocioppo R (2021) Role of nociceptin/orphanin FQ-NOP receptor system in the regulation of stress-related disorders. Int J Mol Sci 22:12956

    CAS  PubMed  PubMed Central  Google Scholar 

  • Unterwald EM, Cuntapay M (2000) Dopamine-opioid interactions in the rat striatum: a modulatory role for dopamine D1 receptors in delta opioid receptor-mediated signal transduction. Neuropharmacology 39:372–381

    CAS  PubMed  Google Scholar 

  • Van Eenige R, Van Der Stelt M, Rensen PC, Kooijman S (2018) Regulation of adipose tissue metabolism by the endocannabinoid system. Trends Endocrinol Metab 29:326–337

    PubMed  Google Scholar 

  • Velayudhan L, Van Diepen E, Marudkar M, Hands O, Suribhatla S, Prettyman R, Murray J, Baillon S, Bhattacharyya S (2014) Therapeutic potential of cannabinoids in neurodegenerative disorders: a selective review. Curr Pharm Des 20:2218–2230

    CAS  PubMed  Google Scholar 

  • Waldhoer M, Bartlett SE, Whistler JL (2004) Opioid receptors. Ann Rev Biochem 73:953–990

    CAS  PubMed  Google Scholar 

  • Wang H, Zhang Y, Ma X, Wang W, Xu X, Huang M, Xu L, Shi H, Yuan T, Jiang W (2020) Spinal Tlr4/P2x7 receptor-dependent Nlrp3 inflammasome activation contributes to the development of tolerance to morphine-induced antinociception. J Inflamm Res 13:571–582

    PubMed  PubMed Central  Google Scholar 

  • Wilms H, Sievers J, Rickert U, Rostami-Yazdi M, Mrowietz U, Lucius R (2010) Dimethylfumarate inhibits microglial and astrocytic inflammation by suppressing the synthesis of nitric oxide, IL-1β, TNF-α and IL-6 in an in-vitro model of brain inflammation. J Neuroinflammation 7:1–8

    Google Scholar 

  • Wilson CJ, Groves PM (1980) Fine structure and synaptic connections of the common spiny neuron of the rat neostriatum: a study employing intracellular injection of horseradish peroxidase. J Comp Neurol 194:599–615

    CAS  PubMed  Google Scholar 

  • Xiang C, Li H, Tang W (2022) Targeting CSF-1r represents an effective strategy in modulating inflammatory diseases. Pharmacol Res 187:106566

    PubMed  Google Scholar 

  • Xu Y, Zhi F, Shao N, Wang R, Yang Y, Xia Y (2016) Cytoprotection against hypoxic and/or MPP+ injury: effect of δ-opioid receptor activation on caspase 3. Int J Mol Sci 17:1179

    PubMed  PubMed Central  Google Scholar 

  • Yan S, Wei X, Jian W, Qin Y, Liu J, Zhu S, Jiang F, Lou H, Zhang B (2020) Pharmacological inhibition of HDAC6 attenuates NLRP3 inflammatory response and protects dopaminergic neurons in experimental models of Parkinson’s disease. Front Aging Neurosci 12:78

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang L, Wang H, Shah K, Karamyan VT, Abbruscato TJ (2011) Opioid receptor agonists reduce brain EDEMA in stroke. Brain Res 1383:307–316

    CAS  PubMed  Google Scholar 

  • Yang C, Mo Y, Xu E, Wen H, Wei R, Li S, Zheng J, Li W, Le B, Chen Y (2019) Astragaloside IV ameliorates motor deficits and dopaminergic neuron degeneration via inhibiting neuroinflammation and oxidative stress in a Parkinson’s disease mouse model. Int Immunopharmacol 75:105651

    CAS  PubMed  Google Scholar 

  • Yarar E (2021) Role and function of endocannabinoid system in major depressive disease. Med Cannabis Cannabinoids 4:1–12

    PubMed  Google Scholar 

  • Zhu M, Li M-W, Tian X-S, Ou X-M, Zhu C-Q, Guo J-C (2009) Neuroprotective role of δ-opioid receptors against mitochondrial respiratory chain injury. Brain Res 1252:183–191

    CAS  PubMed  Google Scholar 

  • Zhu M, Li M, Yang F, Ou X, Ren Q, Gao H, Zhu C, Guo J (2011) Mitochondrial ERK plays a key role in delta-opioid receptor neuroprotection against acute mitochondrial dysfunction. Neurochem Int 59:739–748

    CAS  PubMed  Google Scholar 

  • Zhu Z-G, Sun M-X, Zhang W-L, Wang W-W, Jin Y-M, Xie C-L (2017) The efficacy and safety of coenzyme Q10 in Parkinson’s disease: a meta-analysis of randomized controlled trials. Neurol Sci 38:215–224

    PubMed  Google Scholar 

  • Zuccato C, Cattaneo E (2007) Role of brain-derived neurotrophic factor in Huntington’s disease. Prog Neurobiol 81:294–330

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors pay deep sense of gratitude to Prof. (Dr.) Y.K. Gupta (MD, PhD) President AIIMS Bhopal and Jammu and Chairman Research Advisory committee ISF College of Pharmacy, Moga-142001, Pb. India. Further highly thankful to management and chairman Sh. Parveen Sir, ISF College of Pharmacy, Moga-142001, Pb. India and all those scientists who published lot of advanced research in the field of Neuropharmacology.

Funding

No funding is associated with this work.

Author information

Authors and Affiliations

Authors

Contributions

MRA wrote the manuscript, manuscript reading, data collection and data contribution. SS contributed as designed review paper, data analysis, manuscript reading and final approval.

Corresponding author

Correspondence to Shamsher Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval and consent to participate

Not applicable because this is a review paper.

Consent for publication

All the authors are agreed for the publication of current review paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alam, M.R., Singh, S. Neuromodulation in Parkinson’s disease targeting opioid and cannabinoid receptors, understanding the role of NLRP3 pathway: a novel therapeutic approach. Inflammopharmacol 31, 1605–1627 (2023). https://doi.org/10.1007/s10787-023-01259-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-023-01259-0

Keywords

Navigation