Skip to main content
Log in

Model of the Plastic Zone at the Point of Intersection of Microplastic Deformation Lines

  • Published:
International Applied Mechanics Aims and scope

A small-scale plastic zone at the point of intersection of microplastic deformation lines is identified. The problem on the plastic zone is reduced to a symmetric elasticity problem for a plane with four tangential displacement discontinuity lines emerging from this point. Two of them are semi-finite, while the other two are of finite length. The exact solution of the problem is found using the Wiener–Hopf method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. T. Berezhnitskii and N. M. Kundrat, “Plastic bands at the tip of a linear rigid inclusion,” Strength of Materials, 14, No. 11, 1502–1505 (1982).

    Article  Google Scholar 

  2. L. T. Berezhnitskii and N. M. Kundrat, “Origin and development of plastic strains in the neighborhood of an acute-angled rigid inclusion,” Materials Science, 19, No. 6, 538–546 (1984).

    Article  Google Scholar 

  3. P. M. Vitvitskii, V. V. Panasyuk, and S. Ya. Yarema, “Plastic strains in the vicinity of cracks and the criteria of fracture. A review,” Strength of Materials, 5, No. 2, 135–151 (1973).

    Article  Google Scholar 

  4. A. A. Kaminsky, A. S. Bykovtsev, L. A. Kipnis, and G. A. Khasin, “Stress intensity at the tips of shear cracks emerging from a point on an elastic plane,” Dop. NAN Ukrainy, No. 1, 56–58 (2005).

  5. B. Noble, Methods Based on the Wiener–Hopf Technique for the Solution of Partial Differential Equations, Pergamon Press, London (1958).

  6. V. V. Panasyuk, A. E. Andreikiv, and V. Z. Parton, Fundamentals of Fracture Mechanics of Materials [in Russian], Naukova Dumka, Kyiv (1988).

  7. V. V. Panasyuk and M. P. Savruk, “Model of plasticity bands in elastoplastic failure mechanics,” Materials Science, 28, No. 1, 41–57 (1992).

    Article  Google Scholar 

  8. V. Z. Parton and P. I. Perlin, Methods of Mathematical Theory of Elasticity [in Russian], Nauka, Moscow (1981).

  9. A. A. Kaminsky and Yu. A. Chernoivan, “Determination of safe static loads for polymeric composites weakened by cracks,” Int. Appl. Mech., 54, No. 4, 384–392 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  10. A. A. Kaminskii, L. A. Kipnis, and G. A. Khasin, “Study of the stress state near a corner point in simulating the initial plastic zone by slip bands,” Int. Appl. Mech., 37, No. 5, 647–653 (2001).

    Article  ADS  Google Scholar 

  11. A. A. Kaminskii, L. A. Kipnis, and G. A. Khasin, “Analysis of the plastic zone at a corner point by the trident model,” Int. Appl. Mech., 38, No. 5, 611–616 (2002).

    Article  ADS  Google Scholar 

  12. A. A. Kaminskii, L. A. Kipnis, and T. V. Polishchuk, “Stress state near a small-scale crack at the corner point of the interface of media,” Int. Appl. Mech., 54, No. 5, 506–518 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  13. A. A. Kaminskii, L. A. Kipnis, and T. V. Polishchuk, “Cottrell crack nucleation condition,” Int. Appl. Mech., 54, No. 6, 642–652 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  14. A. A. Kaminskii and E. E. Kurchakov, “Influence of tension along a mode I crack in an elastic body on the formation of a nonlinear zone,” Int. Appl. Mech., 51, No. 2, 130–148 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  15. A. A. Kaminskii and M. F. Selivanov, “Modelling subcritical crack growth in a viscoelastic body under concentrated forces,” Int. Appl. Mech., 53, No. 5, 538–544 (2017).

    Article  ADS  Google Scholar 

  16. A. A. Kaminsky, M. F. Selivanov, and Yu. A. Chernoivan, “Kinetics of mode I crack growth in a viscoelastic polymeric material with nanoinclusions,” Int. Appl. Mech., 54, No. 1, 34–40 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  17. K. K. Lo, “Modeling of plastic yielding at a crack tip by inclined slip planes,” Int. J. Fract., 15, No. 6, 583–589 (1979).

    Article  Google Scholar 

  18. J. R. Rice, “Limitations to the small scale yielding approximation for crack tip plasticity,” J. Mech. Phys. Solids, 22, No. 1, 17–26 (1974).

    Article  ADS  Google Scholar 

  19. H. Ridel, “Plastic yielding on inclined slip-planes at a crack tip,” J. Mech. Phys. Solids, 24, No. 5, 277–289 (1976).

    Article  ADS  Google Scholar 

  20. M. F. Selivanov, “Slow growth of a crack with contacting faces in viscoelastic bodies,” Int. Appl. Mech., 53, No. 6, 617–622 (2017).

    Article  ADS  Google Scholar 

  21. V. Vitek, “Yielding on inclined planes at the tip of a crack loaded in uniform tension,” J. Mech. Phys. Solids, 24, No. 5, 263–275 (1976).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Polishchuk.

Additional information

Translated from Prikladnaya Mekhanika, Vol. 55, No. 5, pp. 69–77, September–October 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaminsky, A.A., Kipnis, L.A. & Polishchuk, T.V. Model of the Plastic Zone at the Point of Intersection of Microplastic Deformation Lines. Int Appl Mech 55, 515–523 (2019). https://doi.org/10.1007/s10778-019-00973-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-019-00973-z

Keywords

Navigation