Skip to main content
Log in

Determination of the Natural Frequencies of Compound Anisotropic Shell Systems Using Various Deformation Models

  • Published:
International Applied Mechanics Aims and scope

An approach to determining the natural frequencies and modes of compound systems of shells of revolution of different geometry and relative thickness, continuously and/or discretely inhomogeneous across the thickness is proposed. The shells are made of isotropic, orthotropic, and anisotropic materials with a single plane of elastic symmetry. The approach involves construction of a mathematical model based on the classical Kirchhoff–Love theory, Timoshenko-type refined theory, spatial elasticity theory (particular case), and numerical-analytical technique of solving associated two- and three-dimensional problems by reducing their dimension and using the successive approximation and step-by-step search methods in combination with the orthogonal sweep method. Examples of solving various problems in different fields of engineering are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. E. Bellman and R. E. Kalaba, Quasilinearization and Nonlinear Boundary-Value Problems, Elsevier, New York (1965).

    MATH  Google Scholar 

  2. S. K. Godunov, “Numerical solution of boundary-value problems for systems of linear ordinary differential equations,” Usp. Mat. Nauk, 16, No. 3, 171–174 (1961).

    MathSciNet  Google Scholar 

  3. Ya. M. Grigorenko, E. I. Bespalova, A. B. Kitaigorodskii, and A. I. Shinkar, Free Vibrations of Elements of Shell Structures [in Russian], Naukova Dumka, Kyiv (1986).

  4. Ya. M. Grigorenko and A. T. Vasilenko, Theory of Shells of Varying Stiffness, Vol. 4 of the five-volume series Methods of Shell Design [in Russian], Naukova Dumka, Kyiv (1981).

  5. Von L. Collatz, Eigenvalue Problems with Engineering Applications [in German], Akad. Verlagsges., Leipzig (1963).

    Google Scholar 

  6. S. G. Lekhnitskii, Theory of Elasticity of an Anisotropic Body [in Russian], Mir, Moscow (1977).

  7. V. D. Budak, A. Ya. Grigorenko, M. Yu. Borisenko, and E. V. Boichuk, “Frequencies and modes of natural vibrations of noncircular cylindrical shells of variable thickness,” Int. Appl. Mech., 53, No. 2, 164–172 (2017).

    Article  ADS  Google Scholar 

  8. M. Caresta and N. J. Kessissoglou, “Free vibrational characteristics of isotropic coupled cylindrical-conical shells,” J. ound Vibr., 329, 733–784 (2010).

    Article  ADS  Google Scholar 

  9. L. Cheng and J. Nicolas, “Free vibration analysis of a cylindrical shell-circular plate system with general coupling and various boundary conditions,” J. Sound Vibr., 155, 231–247 (1992).

    Article  MATH  ADS  Google Scholar 

  10. D. Chronopoulos, M. Ichchou, B. Troclet, and O. Bareille, “Predicting the broadband response of a layered cone-cylinder-cone shell,” Compos. Struct., 107, 149–159 (2014).

    Article  Google Scholar 

  11. A. Ya. Grigorenko, T. L. Efimova, and Yu. A. Korotkikh, “Free vibrations of non-thin cylindrical shells of a variable thickness with elliptic cross-section,” Int. Appl. Mech., 53, No. 6, 668–679 (2017).

    Article  ADS  Google Scholar 

  12. W. C. L. Hu and J. P. Raney, “Experimental and analytical study of vibrations of joined shells,” AIAA J., 5, No. 5, 976–981 (1967).

    Article  ADS  Google Scholar 

  13. E. Kamke, Differentialgleichungen. Losungmethoden und Losungen. I Gewonliche Differentialgleichungen, 6th Verbesserte-Auflage, Leipzig (1959).

  14. Y. S. Lee, M. S. Yang, Y. S. Kim, and J. H. Kim, “A study on the free vibration of the joined cylindrical-spherical shell structures,” Compos. Struct., 80, No. 27–30, 2405–2414 (2002).

    Article  Google Scholar 

  15. S. Liang and H. L. Chen, “The natural vibration of a conical shell with an annular end plate,” J. Sound Vibr., 294, 927–943 (2006).

    Article  ADS  Google Scholar 

  16. A. V. Marchuk, S. V. Gniedash, and S. A. Levkovsky, “Free and forced vibrations of thick-walled anisotropic cylindrical shells,” Int. Appl. Mech., 53, No. 2, 181–195 (2017).

    Article  MathSciNet  ADS  Google Scholar 

  17. Y. Qu, S. Wu, Y. Chen, and Y. Hua, “Vibration analysis of ring-stiffened conical-cylindrical-spherical shells based on a modified variational approach,” Int. J. Mech. Sci., 69, 72–84 (2013).

    Article  Google Scholar 

  18. B. P. Patel, M. Ganapathi, and S. Kamat, “Free vibration characteristics of laminated composite joined conical-cylindrical shells,” J. Sound Vibr., 237, 920–930 (2000).

    Article  ADS  Google Scholar 

  19. M. Shakouri and M. A. Kouchakzadeh, “Free vibration analysis of joined conical shells: analytical and experimental tudy,” J. Thin-Walled Struct., 85, 350–358 (2014).

    Article  Google Scholar 

  20. X. C. Shang, “Exact analysis for three vibration of a composite shell structure-hermetic capsule,” Appl. Math. Mech., 22, 1035–1045 (2001).

    Article  MATH  Google Scholar 

  21. Z. Su and G. Jin, “Vibration analysis of coupled conical-cylindrical-spherical shells using a Fourier spectral element method,” J. Acoust. Soc. Am., 140, No. 5, 3925–3940 (2016).

    Article  ADS  Google Scholar 

  22. C. K. Susheel, T. K. Rajeev Kumar, and Vishal Singh Chauhan, “Nonlinear vibration analysis of piezolaminated functionally graded cylindrical shells,” Int. J. Nonlin. Dynam. Cont., 1, No. 1, 27–50 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Bespalova.

Additional information

Translated from Prikladnaya Mekhanika, Vol. 55, No. 1, pp. 44–59, January–February, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bespalova, E.I., Boreiko, N.P. Determination of the Natural Frequencies of Compound Anisotropic Shell Systems Using Various Deformation Models. Int Appl Mech 55, 41–54 (2019). https://doi.org/10.1007/s10778-019-00932-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-019-00932-8

Keywords

Navigation