Skip to main content
Log in

Generalized Method of Finite Integral Transforms in Static Problems for Anisotropic Prisms

  • Published:
International Applied Mechanics Aims and scope

A new approach to solving three-dimensional elliptic linear boundary-value problems with nonseparable variables is developed using the ideas of methods of finite integral transforms. It consists in setting up a coupled system of three integral transforms with three pairs of independent variables of the domain, from which the transforms and kernels are determined. The approach is used to solve static problems for anisotropic prisms with elastic properties of low order of symmetry and arbitrary conditions on the faces. The approach is tested and the deformation of specific bodies of this class is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. A. Grinberg, “New method for solving some boundary-value problems for equations of mathematical physics that allows separation of variables,” Izv. AN SSSR, Ser. Fiz., No. 10, 141–168 (1946).

  2. V. V. Dykhta, Integral Transform Method in Wave Problems of Hydroacoustics [in Russian], Naukova Dumka, Kyiv (1981).

    MATH  Google Scholar 

  3. N. S. Koshlyakov, E. B. Gliner, and M. M. Smirnov, Basic Differential Equations of Mathematical Physics [in Russian], Fizmatgiz, Moscow (1962).

    MATH  Google Scholar 

  4. S. G. Lekhnitskii, Theory of Elasticity of Anisotropic Body [in Russian], Fiz.-Mat. Lit., Moscow (1977).

    MATH  Google Scholar 

  5. A. V. Lykov, Theory of Heat Conduction [in Russian], Vysshaya Shkola, Moscow (1967).

    Google Scholar 

  6. Yu. E. Senitskii, Studying the Elastic Deformation of Structural Elements under Dynamic Loads using the Finite Transform Method [in Russian], Saratov Univ., Saratov (1985).

    Google Scholar 

  7. Yu. E. Senitskii, “Finite integral transform method. Its prospects in studying boundary-value problems of mechanics (review),” Vest. SamGTU, Ser. Mat., No. 22, 10–39 (2003).

  8. Yu. E. Senitskii, “Finite integral transform method: generalization of the classical procedure of expansion into series of vector eigenfunctions,” Izv. Saratov. Univ., Ser. Mat.-Mekh.- Inform., No. 3(1), 61–89 (2011).

  9. Ya. C. Uflyand, Integral Transforms in Elasticity Problems [in Russian], Nauka, Leningrad (1967).

    Google Scholar 

  10. V. K. Chibiryakov and A. M. Smolyar, “On one generalization of the finite integral transform method in the theory of thick plates,” in: Strength of Materials and Theory of Structures [in Russian], issue 42, Budivel’nik, Kyiv (1983), pp. 80–86.

  11. E. I. Bespalova and A. B. Kitaygorodslii, “Advanced Kantorovich’s method for biharmonic problems,” J. Eng. Math., 46, 213–226 (2003).

    Article  MathSciNet  Google Scholar 

  12. E. Bespalova and G. Urusova, “Solution of the Lame problem by the complete systems method,” Int. J. Comp. Meth. Eng. Sci. Mech., 14, No. 2, 159–167 (2013).

    Article  MathSciNet  Google Scholar 

  13. E. I. Bespalova, “On the method of finite integral transforms in problems of statics of inhomogeneous plates,” Int. Appl. Mech., 50, No. 6, 651–663 (2014).

    Article  ADS  MATH  Google Scholar 

  14. A. M. Bidgoli, A. R. Daneshmehr, and R. Kolahchi, “Analytical bending solution of full clamped orthotropic rectangular plates resting on elastic foundations by the finite integral transform method,” J. Appl. Comp. Mech., 1, No. 2, 52–58 (2015).

    Google Scholar 

  15. N. Dernek, “On the solution of the e.p.d. equation using finite integral transformations,” Turkish J. Math., 21, 317–324 (1997).

    MathSciNet  MATH  Google Scholar 

  16. A. C. Eringen, “The finite Sturm–Liouwille transform,” Quart. J. Math., 2, No. 5, 120–131 (1954).

    Article  ADS  MATH  Google Scholar 

  17. A. C. Eringen, “Transform technique for boundary-value problems in fourth-order partial differential equations,” Quart. J. Math., 6, No. 24, 241–249 (1955).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. V. I. Fabrikant, “Application of generalized images method to contact problems for a transversely isotropic elastic layer on a smooth half-space,” Archive Appl. Mech., 81, No. 7, 957–974 (2011).

    Article  ADS  MATH  Google Scholar 

  19. E. A. Gasimov, “Application of the finite integral transform method to solving a mixed problem with integrodifferential conditions for a nonclassical equation,” Diff. Eqs., 47, No. 3, 319–332 (2011).

    Article  Google Scholar 

  20. V. D. Kubenko, “A non-stationary problem for elastic half-plane under mixed boundary conditions,” Int. Appl. Mech., 52, No. 2, 105–118 (2016).

    Article  ADS  MATH  Google Scholar 

  21. V. D. Kubenko, “Nonstationary deformation of an elastic layer with mixed boundary conditions,” Int. Appl. Mech., 52, No. 6, 563–580 (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. H. Lamb, “On the propagation of tremors over the surface of an elastic solid,” Phil. Trans. Roy. Soc. of London, Ser. A, 203, 1–42 (1904).

    Article  ADS  MATH  Google Scholar 

  23. R. Li, Y. Zhong, B. Tian, and Y. Liu, “On the finite integral transform method for exact bending solutions of fully clamped orthotropic rectangular thin plates,” Appl. Math. Letters, 22, 1821–1827 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  24. J. Ruan, X. Feng, G. Zhang, Y. Wang, and D. Fang, “Dynamic thermoelastic analysis of a slab using finite integral transformation method,” AIAA J., 48, No. 8, 1833–1839 (2010).

    Article  ADS  Google Scholar 

  25. Yu. N. Shevchenko and V. G. Savchenko, “3-D problems of thermoviscoplasticity: Focus on Ukrainian studies,” Int. Appl. Mech., 52, No. 3, 217–271 (2016).

    Article  ADS  MATH  Google Scholar 

  26. S. Singh and P. K. Jain, “Finite integral transform method to solve asymmetric heat conduction in a multilayer annulus with time-dependent boundary conditions,” Nucl. Eng. Design, 241, No. 1, 144–154 (2011).

    Article  Google Scholar 

  27. I. N. Sneddon, Fourier Transforms, McGraw-Hill Book Company Inc., New York (1951).

    MATH  Google Scholar 

  28. I. N. Sneddon, The Use of Integral Transforms, McGraw-Hill, New York (1972).

    MATH  Google Scholar 

  29. I. N. Sneddon, Application of Integral Transforms in the Theory of Elasticity, McGraw-Hill, New York (1975).

    MATH  Google Scholar 

  30. C. J. Tranter, Integral Transforms in Mathematical Physics, Wiley, New York (1951).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Bespalova.

Additional information

Translated from Prikladnaya Mekhanika, Vol. 54, No. 1, pp. 52–67, January–February, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bespalova, E.I. Generalized Method of Finite Integral Transforms in Static Problems for Anisotropic Prisms. Int Appl Mech 54, 41–55 (2018). https://doi.org/10.1007/s10778-018-0858-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-018-0858-2

Keywords

Navigation