Skip to main content
Log in

Dispersion Properties of Lamb Waves in an Elastic Layer–Ideal Liquid Half-Space System

  • Published:
International Applied Mechanics Aims and scope

The problem of the propagation of normal waves in an elastic layer interacting with a compressible ideal liquid half-space is stated and solved using the three-dimensional linear equations of classical elasticity for the solid and the three-dimensional linearized Euler equations for the compressible ideal fluid. The dispersion curves are plotted for quasi-Lamb modes over a wide frequency range. The effect of the ideal compressible fluid and the elastic layer thickness on the dispersion of the phase velocities of quasi-Lamb modes in hydroelastic waveguides is analyzed. The localization properties of these modes in hydroelastic waveguides are studied. The numerical results are presented in the form of plots and analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. A. Viktorov, Surface Acoustic Waves in Solids [in Russian], Nauka, Moscow (1981).

  2. M. M. Vol’kenshtein and V. M. Levin, “Structure of a Stoneley wave at the interface between a viscous fluid and a solid,” Akust. Zh., 34, No. 4, 608–615 (1988).

    Google Scholar 

  3. A. N. Guz, General Issues, Vol. 1 of the two-volume series Elastic Waves in Prestressed Bodies [in Russian], Naukova Dumka, Kyiv (1986).

  4. A. N. Guz, Propagation Laws, Vol. 2 of the two-volume series Elastic Waves in Prestressed Bodies [in Russian], Naukova Dumka, Kyiv (1986).

  5. A. N. Guz, Dynamics of Compressible Viscous Fluid [in Russian], A.S.K., Kyiv (1998).

    Google Scholar 

  6. A. N. Guz, Elastic Waves in Bodies with Initial (Residual) Stresses [in Russian], A.S.K., Kyiv (2004).

    Google Scholar 

  7. A. Guz, Elastic Waves in Bodies with Initial (Residual) Stresses, Part 1: General Principles. Waves in Unbounded Bodies and Surface Waves [in Russian], LAP LAMBERT Academic Publishing, Saarbrucken (2016).

  8. A. Guz, Elastic Waves in Bodies with Initial (Residual) Stresses, Part 2: Waves in Partially Bounded Bodies [in Russian], LAP LAMBERT Academic Publishing, Saarbrucken (2016).

    Google Scholar 

  9. A. N. Guz, An Introduction to the Dynamics of Compressible Viscous Fluid [in Russian], LAP LAMBERT Academic Publishing RU, Saarbrucken (2017).

    Google Scholar 

  10. A. N. Guz, A. P. Zhuk, and F. G. Makhort, Waves in a Prestressed Layer [in Russian], Naukova Dumka, Kyiv (1976).

    Google Scholar 

  11. A. M. Bagno, “The dispersion spectrum of a wave process in a system consisting of an ideal fluid layer and a compressible elastic layer,” Int. Appl. Mech., 51, No. 6, 648–654 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  12. A. M. Bagno, “Wave propagation in an elastic layer interacting with a viscous liquid layer,” Int. Appl. Mech., 52, No. 2, 133–139 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  13. A. M. Bagno and A. N. Guz, “Elastic waves in pre-stressed bodies interacting with a fluid (survey),” Int. Appl. Mech., 33, No. 6, 435–463 (1997).

    Article  ADS  MATH  Google Scholar 

  14. B. W. Drinkwater and P. D. Wilcox, “Ultrasonic arrays for non-destructive evaluation: A review,” NDT & E International, 39, No. 7, 525–541 (2006).

    Article  Google Scholar 

  15. A. Gibson and J. Popovics, “Lamb wave basis for impact-echo method analysis,” J. Eng. Mech., 131, No. 4, 438–443 (2005).

    Article  Google Scholar 

  16. A. N. Guz, “Aerohydroelasticity problems for bodies with initial stresses,” Int. Appl. Mech., 16, No. 3, 175–190 (1980).

    ADS  MathSciNet  MATH  Google Scholar 

  17. A. N. Guz, Dynamics of Compressible Viscous Fluid, Cambridge Scientific Publishers, Cambridge (2009).

    MATH  Google Scholar 

  18. A. N. Guz, “On the foundations of the ultrasonic non-destructive determination of stresses in near-the-surface layers of materials. Review,” J. Phys. Sci. Appl., 1, No. 1, 1–15 (2011).

    Google Scholar 

  19. A. N. Guz, “Ultrasonic nondestructive method for stress analysis of structural members and near-surface layers of materials: Focus on Ukrainian research (review),” Int. Appl. Mech., 50, No. 3, 231–252 (2014).

    Article  ADS  Google Scholar 

  20. A. N. Guz, A. P. Zhuk, and A. M. Bagno, “Dynamics of elastic bodies, solid particles, and fluid parcels in a compressible viscous fluid (review),” Int. Appl. Mech., 52, No. 5, 449–507 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  21. K. Y. Jhang, “Nonlinear ultrasonic techniques for nondestructive assessment of micro damage in material: a review,” Int. J. Prec. Eng. Manufact., 10, No. 1, 123–135 (2009).

    Article  Google Scholar 

  22. S. S. Kessler, S. M. Spearing, and C. Soutis, “Damage detection in composite materials using Lamb wave methods,” Smart Mater. Struct., 11, No. 2, 269–279 (2002).

    Article  ADS  Google Scholar 

  23. M. Kobayashi, S. Tang, S. Miura, K. Iwabuchi, S. Oomori, and H. Fujiki, “Ultrasonic nondestructive material evaluation method and study on texture and cross slip effects under simple and pure shear states,” Int. J. Plastic., 19, No. 6, 771–804 (2003).

    Article  MATH  Google Scholar 

  24. K. R. Leonard, E. V. Malyarenko, and M. K. Hinders, “Ultrasonic Lamb wave tomography,” Inverse Problems, 18, No. 6, 1795–1808 (2002).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. L. Liu and Y. Ju, “A high-efficiency nondestructive method for remote detection and quantitative evaluation of pipe wall thinning using microwaves,” NDT & E International, 44, No. 1, 106–110 (2011).

    Article  Google Scholar 

  26. C. Ramadas, K. Balasubramaniam, M. Joshi, and C. V. Krishnamurthy, “Interaction of the primary anti-symmetric Lamb mode (Ao) with symmetric delaminations: numerical and experimental studies,” Smart Mater. Struct., 18, No. 8, 1–7 (2009).

    Article  Google Scholar 

  27. N. S. Rossini, M. Dassisti, K. Y. Benyounis, and A. G. Olabi, “Methods of measuring residual stresses in components,” Materials & Design, 35, March, 572–588 (2012).

  28. M. Spies, “Analytical methods for modeling of ultrasonic nondestructive testing of anisotropic media,” Ultrasonics, 42, No. 1–9, 213–219 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Bagno.

Additional information

Translated from Prikladnaya Mekhanika, Vol. 53, No. 6, pp. 3–15, November–December, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagno, A.M. Dispersion Properties of Lamb Waves in an Elastic Layer–Ideal Liquid Half-Space System. Int Appl Mech 53, 609–616 (2017). https://doi.org/10.1007/s10778-018-0843-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-018-0843-9

Keywords

Navigation