Skip to main content
Log in

Robust Stabilization of Bilinear Systems Under Interval Initial Conditions

  • Published:
International Applied Mechanics Aims and scope

The problem of the robust stabilization of bilinear systems under interval initial conditions is solved by using integral inequalities. The braking of a car is considered as an example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. F. Bylov, R. E. Vinogradov, D. M. Grobman, and V. V. Nemytskii, Theory of Lyapunov Exponents [in Russian], Nauka, Moscow (1966).

    Google Scholar 

  2. E. L. Tonkov, Stability of the Solutions of Ordinary Differential Equations [in Russian], Izd. Mosk. Inst. Khim. Mashinostr., Moscow (1972).

    Google Scholar 

  3. S. P. Sharyi, Finite-Dimensional Interval Analysis [in Russian], Izd. XYZ, Novosibirsk (2013).

    Google Scholar 

  4. N. El. Alami, Analyse et Commande Optimale des Systemes Bilineaires Distribues, Applications aux Procedes Energetiques, PhD thesis, Univesitede Perpignan, France (1986).

  5. G. Alefeld and G. Mayer, “Interval analysis: theory and applications,” J. Comp. Appl. Math., 121, 421–464 (2000).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Ye. A. Babenko and A. A. Martynyuk, “Stabilization of the motion of a nonlinear system with interval conditions,” Int. Appl. Mech., 52, No. 2, 182–191 (2016).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. A. Benallou, D. Mellichamp, and D. Seborg, “Charaterization of equilibrium sets for bilinear systems with feedback control,” Automatica, 19, 183–189 (1983).

    Article  MATH  Google Scholar 

  8. M. Espana and I. Landau, “Reduced order bilinear models for distillations columns,” Automatica, 14, 345–355 (1977).

    Article  Google Scholar 

  9. Z. Kardous and N. Benhadj Braiek, “Stabilizing sliding mode control for homogeneous bilinear systems,” Nonlin. Dynam. Syst. Theor., 14 (3), 303–312 (2014).

    MATH  MathSciNet  Google Scholar 

  10. R. Longchamp, “Stable feedback control of bilinear systems,” IEEE Trans. Aut. Contr., 25, 302–306 (1980).

    Article  MATH  MathSciNet  Google Scholar 

  11. A. A. Martynyuk and Ye. A. Babenko, “Finite time stability of uncertain affine systems,” Math. Eng. Sci. Aerospace, 7, No. 1, 179–196 (2016).

    Google Scholar 

  12. A. A. Martynyuk, “Novel bounds for solutions of nonlinear differential equations,” Appl. Math., 6, 182–194 (2015).

    Article  Google Scholar 

  13. R. Mohler, Nonlinear Systems: Applications to Bilinear Control, Vol. 2, Prentice Hall, Englewood Cliffs, New Jersey (1991).

    MATH  Google Scholar 

  14. R. Mohler, Bilinear Control Processes: with Applications to Engineering, Ecology, and Medicine, Academic Press, New York (1973).

    MATH  Google Scholar 

  15. B. G. Pachpatte, Inequalities for Differential and Integral Equations, Ames, New York (1997).

    MATH  Google Scholar 

  16. E. Ryan and N. Buckingham, “On asymptotically stabilizing feedback control of bilinear systems,” IEEE Trans. Aut. Contr., 28, 863–864 (1983).

    Article  MATH  Google Scholar 

  17. J. M. Schumacher, “A direct approach to compensator design for distributed parameter systems,” SIAM J. Contr. Optimiz., 21, 823–836 (1983).

    Article  MATH  MathSciNet  Google Scholar 

  18. M. Slemrod, “Stabilization of bilinear control systems with applications to nonconservative problems in elasticity,” SIAM J. Contr. Optimiz., 16, 131–141 (1978).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Martynyuk.

Additional information

Translated from Prikladnaya Mekhanika, Vol. 53, No. 4, pp. 117–127, July–August, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martynyuk, A.A., Babenko, E.A. Robust Stabilization of Bilinear Systems Under Interval Initial Conditions. Int Appl Mech 53, 454–463 (2017). https://doi.org/10.1007/s10778-017-0829-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-017-0829-z

Keywords

Navigation