Skip to main content
Log in

Dynamics of Elastic Bodies, Solid Particles, and Fluid Parcels in a Compressible Viscous Fluid (Review)

  • Published:
International Applied Mechanics Aims and scope

The results of linearization of the basic equations describing a compressible viscous fluid in which low-amplitude oscillations occur or solids move or that interacts with elastic bodies in which small perturbations propagate are discussed. The general solutions of the linearized equations are presented. The results of studying wave processes in hydroelastic systems using the three-dimensional linearized theory of finite deformations and theory of compressible viscous fluid are discussed. The results of studying the propagation of acoustic waves of various types in waveguides with plane and circular cylindrical interfaces between elastic and liquid media and the influence of large (finite) initial deformations, viscosity and compressibility of the fluid on acoustic waves are presented. Studies of the motion of objects in compressible ideal and viscous fluids under the action of radiation forces due to the acoustic field are reviewed. The emphasis is placed on the studies that use a method involving the solution of hydrodynamic problems for a compressible fluid with solid particles and the evaluation of the forces acting on these particles. The radiation force is determined as the constant component of the hydrodynamic force. The numerical results are presented in the form of plots, which are then analyzed

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. N. Alekseev, “The radiation pressure force on a sphere revisited,” Akust. Zh., 29, No. 2, 129–136 (1983).

    Google Scholar 

  2. W. Altberg, “Uber die Druckkrafte der Schallwellen und die absolute Messung der Schallintensitat (On the force due to sound waves and the absolute measurement of sound intensity),” Annalen der Physik, 11, 405–420 (1903).

    Article  ADS  Google Scholar 

  3. S. Yu. Babich, A. N. Guz, and A. P. Zhuk, “Elastic waves in bodies with initial stresses,” Int. Appl. Mech., 15, No. 4, 277–291 (1979).

    ADS  MathSciNet  MATH  Google Scholar 

  4. S. Yu. Babich and A. P. Zhuk, “Revisiting the theory of Stoneley waves at the cylindrical interface between a fluid and a prestrained body,” Dokl. AN USSR, Ser. A, No. 7, 36–39 (1981).

  5. A. M. Bagno, “Small-perturbation propagation in a system consisting of a preliminarily stressed incompressible cylinder and fluid,” Int. Appl. Mech., 16, No. 6, 487–491 (1980).

    ADS  MATH  Google Scholar 

  6. A. M. Bagno, “Propagation of longitudinal waves in a prestressed compressible cylinder containing a liquid,” Int. Appl. Mech., 16, No. 8, 672–676 (1980).

    ADS  MATH  Google Scholar 

  7. A. M. Bagno, “The question of the influence of initial stresses on the “backward wave” in a prestressed compressible cylinder–fluid system,” Int. Appl. Mech., 19, No. 3, 245–248 (1983).

    ADS  MATH  Google Scholar 

  8. A. M. Bagno, “Effect of initial stresses on wave propagation through compressible cylinder containing viscous compressible fluid,” Int. Appl. Mech., 20, No. 4, 387–392 (1984).

    ADS  MathSciNet  MATH  Google Scholar 

  9. A. M. Bagno, “Influence of a viscous compressible fluid on stoneley wave propagation on the interface of solid and liquid media,” Int. Appl. Mech., 20, No. 6, 557–560 (1984).

    ADS  MATH  Google Scholar 

  10. A. M. Bagno, “Influence of a fluid on the velocities of axisymmetric waves in a prestrained compressible cylinder,” Gidromekh., 50, 34–36 (1984).

    Google Scholar 

  11. A. M. Bagno, “Effect of finite strains on the velocities of Stoneley waves in highly elastic incompressible half-space interacting with an ideal fluid,” Prikl. Mekh., 21, No. 6, 116–119 (1985).

    Google Scholar 

  12. A. M. Bagno, “Influence of initial stress on surface waves in a system consisting of a preliminarily deformed compressible body and a viscous compressible liquid,” Int. Appl. Mech., 22, No. 6, 523–526 (1986).

    ADS  Google Scholar 

  13. A. M. Bagno, “Effect of initial stresses on the velocity of surface waves in a compressible half-space interacting with an ideal liquid layer,” Int. Appl. Mech., 25, No. 1, 95–99 (1989).

    ADS  MathSciNet  MATH  Google Scholar 

  14. A. M. Bagno, “Effect of the initial stresses on the wave process in a compressible elastic half-space interacting with a viscous liquid layer,” Dokl. AN USSR, Ser. A, No. 8, 22–25 (1989).

  15. A. M. Bagno, “Waves in a prestrained elastic half-space interacting with a compressible viscous liquid layer,” in: Proc. All-Union Symp. on Interaction of Acoustic Waves with Elastic Bodies (Tallinn, October 26–27, 1989) [in Russian], Tallinn (1989), pp. 22–25.

  16. A. M. Bagno, “Effect of finite strains on the wave process in an incompressible half-space under a viscous liquid layer,” Dokl. AN USSR, Ser. A, No. 7, 36–40 (1990).

  17. O. M. Bagno, “Propagation of waves in a prestrained incompressible elastic layer interacting with a compressible ideal liquid layer,” Visn. Kyiv. Nats. Univ. im. T. Shevchenka, Ser.: Fiz.-Mat. Nauky, No. 3, 22–27 (2014).

  18. O. M. Bagno, “A wave process in a compressible elastic layer interacting with a viscous liquid layer,“ in: Problems of Computational Mechanics and Structural Strength [in Ukrainian], Issue 23, Lira, Dnipropetrovsk (2014), pp. 27–39.

  19. O. M. Bagno, “Waves in a prestrained compressible elastic layer interacting with a compressible viscous liquid layer,” Visn. Kyiv. Nats. Univ. im. T. Shevchenka, Ser.: Fiz.-Mat. Nauky, No. 4, 63–68 (2014).

  20. O. M. Bagno, “Dispersion of waves in an elastic layer under a viscous liquid layer,” Dop. NAN Ukrainy, No. 5, 40–46 (2015).

  21. A. M. Bagno, “Frequency spectrum of normal waves in a prestressed compressible layer interacting with an idela liquid layer,” Dop. NAN Ukrainy, No. 6, 30–36 (2015).

  22. A. M. Bagno, “Lamb waves in an elastic layer–ideal liquid layer system,” Dop. NAN Ukrainy, No. 7, 39–46 (2015).

  23. A. M. Bagno, “Localization of quasi-Lamb waves in an elastic layer–ideal liquid layer system,” Dop. NAN Ukrainy, No. 2, 38–46 (2016).

  24. A. M. Bagno, “Quasi-Lamb waves in a prestressed compressible elastic layer–ideal liquid layer system,” Dop. NAN Ukrainy, No. 3, 38–47 (2016).

  25. A. M. Bagno, “Effect of a viscous fluid on quasi-Lamb waves in an elastic layer interacting with a liquid layer,” Dop. NAN Ukrainy, No. 4, 41–48 (2016).

  26. A. M. Bagno and A. N. Guz, “Effect of a fluid on the propagation of longitudinal waves in a prestressed incompressible cylinder,” Dokl. AN USSR, Ser. A, No. 9, 39–42 (1980).

  27. A. M. Bagno and A. N. Guz, “Wave propagation in a previously stressed, incompressible cylinder containing a viscous compressible liquid,” Mech. Comp. Mater., 18, No. 2, 250–254 (1982).

    Article  Google Scholar 

  28. A. M. Bagno and A. N. Guz, “Propagation of small perturbations in a prestressed compressible body–compressible viscous fluid system,” Izv. AN SSSR, Mekh. Tverd. Tela, No. 1, 167–170 (1983).

  29. A. M. Bagno and A. N. Guz, “Effect of initial stresses on the speed of waves in a hollow cylinder with a fluid,” Int. Appl. Mech., 22, No. 3, 211–215 (1986).

    ADS  Google Scholar 

  30. A. M. Bagno and A. N. Guz, “Stoneley waves at the interface between a prestressed incompressible half-space and a compressible viscous fluid,” Izv. AN SSSR, Mekh. Tverd. Tela, No. 3, 107–110 (1987).

  31. A. M. Bagno and A. N. Guz, “Elastic waves in prestressed bodies interacting with a fluid (survey),” Int. Appl. Mech., 33, No. 6, 435–463 (1997).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. A. M. Bagno, A. N. Guz, and V. I. Efremov, “Effect of initial strains on the propagation of waves in an incompressible cylinder located in an ideal fluid,” Int. Appl. Mech., 30, No. 8, 582–585 (1994).

    Article  ADS  Google Scholar 

  33. A. M. Bagno, A. N. Guz, and G. I. Shchuruk, “Influence of initial strains on the wave velocity in a prestressed incompressible half-space interacting with an ideal fluid layer,” Int. Appl. Mech., 24, No. 6, 593–597 (1988).

    ADS  MATH  Google Scholar 

  34. A. M. Bagno, A. N. Guz, and G. I. Shchuruk, “Waves in a viscous layer of fluid on an elastic half-space,” Int. Appl. Mech., 26, No. 4, 317–320 (1990).

    ADS  MATH  Google Scholar 

  35. A. M. Bagno, A. N. Guz, and G. I. Shchuruk, “Nonaxisymmetric waves in an orthotropic timoshenko shell containing a viscous fluid,” Int. Appl. Mech., 26, No. 12, 1132–1138 (1990).

    ADS  MATH  Google Scholar 

  36. A. M. Bagno, A. N. Guz, and G. I. Shchuruk, “Waves in a prestressed elastic layer in compression interacting with an ideal fluid,” Int. Appl. Mech., 30, No. 2, 85–90 (1994).

    Article  ADS  MATH  Google Scholar 

  37. A. M. Bagno, A. N. Guz, and G. I. Shchuruk, “Influence of fluid viscosity on waves in an initially deformed, compressible, elastic layer interacting with a fluid medium,” Int. Appl. Mech., 30, No. 9, 643–649 (1994).

    Article  ADS  MATH  Google Scholar 

  38. A. M. Bagno and V. P. Koshman, “Effect of finite prestrains on the velocities of Rayleigh waves in an incompressible half-space,” Dokl. AN USSR, Ser. A, No. 9, 18–20 (1983).

  39. O. M. Bagno and G. I. Shchuruk, “Features of the wave process in an elastic layer–viscous fluid system,” Dop. AN Ukrainy, Mat., Pryrodozn., Tekhn. Nauky, No. 9, 52–56 (1993).

  40. A. S. Basmat, A. N. Guz, and A. P. Zhuk, “Wave and nonstationary motions of rigid bodies in a compressible viscous fluid,” in: A. N. Guz (ed.), Dynamics of Bodies Interacting with a Medium [in Russian], Naukova Dumka, Kyiv (1991), pp. 6–52.

    Google Scholar 

  41. T. I. Belyankova and V. V. Kalinchuk, “On the problem of analyzing the dynamic properties of a layered half-space,” Acoust. Phys., 60, No. 5, 530–542 (2014).

    Article  ADS  Google Scholar 

  42. D. R. Bland, The Theory of Linear Viscoelasticity, Pergamon Press, Oxford (1960).

    MATH  Google Scholar 

  43. L. M. Brekhovskikh and O. A. Godin, Acoustics of Layered Media, Springer-Verlag, Berlin (1998–1999).

  44. A. I. Vesnitskii and G. A. Utkin, “Motion of a body along a string under wave pressure forces,” Dokl. AN SSSR, 302, No. 2, 278–280 (1988).

    MathSciNet  Google Scholar 

  45. I. A. Viktorov, Surface Acoustic Waves in Solids [in Russian], Nauka, Moscow (1981).

    Google Scholar 

  46. M. M. Vol’kenshtein and V. M. Levin, “Structure of a Stoneley wave at the interface between a viscous fluid and a solid,” Akust. Zh., 34, No. 4, 608–615 (1988).

    Google Scholar 

  47. R. F. Ganiev and L. E. Ukrainskii, Dynamics of Particles Subject to Vibrations [in Russian], Naukova Dumka, Kyiv (1975).

    MATH  Google Scholar 

  48. Z. A. Gol’dberg, “Sound pressure,” in: L. D. Rosenberg (ed.), High-Power Ultrasonic Fields [in Russian], Nauka, Moscow (1968), pp. 49–86.

    Google Scholar 

  49. Z. A. Gol’dberg and K. A. Naugol’nykh, “Rayleigh sound pressure,” Akust. Zh., 9, No. 1, 28–31 (1963).

    Google Scholar 

  50. L. P. Gor’kov, “The forces acting on a small particle in an acoustic field in an ideal fluid,” Dokl. AN SSSR, 140, No. 1, 88–91 (1961).

    Google Scholar 

  51. V. T. Grinchenko and G. L. Komissarova, “Wave propagation in a hollow elastic cylinder with a fluid,” Int. Appl. Mech., 20, No. 1, 18–23 (1984).

    ADS  MATH  Google Scholar 

  52. V. T. Grinchenko and G. L. Komissarova, “Properties of normal nonaxisymmetric waves in a hollow fluid-filled cylinder,” Int. Appl. Mech., 24, No. 10, 950–954 (1988).

    ADS  MATH  Google Scholar 

  53. V. T. Grinchenko and G. L. Komissarova, “Surface waves in an elastic layer on a liquid half-space system,” Akust. Visn., 8, No. 4, 38–45 (2005).

    Google Scholar 

  54. V. T. Grinchenko and V. V. Meleshko, Harmonic Vibrations and Waves in Elastic Bodies [in Russian], Naukova Dumka, Kyiv (1981).

    MATH  Google Scholar 

  55. A. N. Guz, Stability of Three-Dimensional Deformable Bodies [in Russian], Naukova Dumka, Kyiv (1971).

    Google Scholar 

  56. A. N. Guz, Stability of Elastic Bodies Subject to Finite Deformations [in Russian], Naukova Dumka, Kyiv (1973).

    Google Scholar 

  57. A. N. Guz, “Representation of general solutions in the linearized theory of elasticity of compressible bodies,” Dokl. AN USSR, Ser. A, No. 8, 700–703 (1975).

  58. A. N. Guz, “Representation of general solutions in the linearized theory of elasticity of incompressible bodies,” Dokl. AN USSR, Ser. A, No. 12, 1092–1095 (1975).

  59. A. N. Guz, “Linearized theory of propagation of elastic waves in bodies with initial stresses,” Int. Appl. Mech., 14, No. 4, 339–362 (1978).

    ADS  MathSciNet  MATH  Google Scholar 

  60. A. N. Guz, “Love waves in prestressed bodies,” Dokl. AN USSR, Ser. A, No. 12, 1092–1095 (1978).

  61. A. N. Guz, Stability of Elastic Bodies under Triaxial Compression [in Russian], Naukova Dumka, Kyiv (1979).

    MATH  Google Scholar 

  62. A. N. Guz, “Hydroelastic problems for a viscous fluid and prestressed elastic bodies,” Dokl. AN SSSR, 251, No. 2, 305–308 (1980).

    Google Scholar 

  63. A. N. Guz, “Aerohydroelasticity problems for bodies with initial stresses,” Int. Appl. Mech., 16, No. 3, 175–190 (1980).

    ADS  MathSciNet  MATH  Google Scholar 

  64. A. N. Guz, “Representation of solutions to the linearized Navier–Stokes equations,” Dokl. AN SSSR, 253, No. 4, 825–827 (1980).

    ADS  MathSciNet  Google Scholar 

  65. A. N. Guz, “Representation of solutions to the linearized Navier–Stokes equations for a moving fluid,” Dokl. AN SSSR, 255, No. 5, 1066–1068 (1980).

    MathSciNet  Google Scholar 

  66. A. N. Guz, “Wave propagation in a cylindrical shell containing a viscous compressible liquid,” Int. Appl. Mech., 16, No. 10, 842–850 (1980).

    ADS  MATH  Google Scholar 

  67. A. N. Guz, “Dynamics of rigid bodies in an incompressible viscous fluid (quiescent liquid),” Int. Appl. Mech., 17, No. 3, 207–223 (1981).

    ADS  MATH  Google Scholar 

  68. A. N. Guz, “An analogy in continuum mechanics,” Dokl. AN SSSR, 263, No. 3, 563–565 (1982).

    MathSciNet  Google Scholar 

  69. A. N. Guz, Brittle Fracture Mechanics of Prestressed Materials [in Russian], Naukova Dumka, Kyiv (1983).

    MATH  Google Scholar 

  70. A. N. Guz, Fundamentals of the Three-Dimensional Theory of Stability of Deformable Bodies [in Russian], Vyshcha Shkola, Kyiv (1986).

    MATH  Google Scholar 

  71. A. N. Guz, General Issues, Vol. 1 of the two-volume series Elastic Waves in Prestressed Bodies [in Russian], Naukova Dumka, Kyiv (1986).

  72. A. N. Guz, Propagation Laws, Vol. 2 of the two-volume series Elastic Waves in Prestressed Bodies [in Russian], Naukova Dumka, Kyiv (1986).

  73. A. N. Guz, “Problems of hydroelasticity for compressible viscous fluids,” Int. Appl. Mech., 27, No. 1, 1–12 (1991).

    ADS  MathSciNet  MATH  Google Scholar 

  74. A. N. Guz, “Elastic waves in compressible materials with initial stresses and a nondestructive ultrasonic method for the determination of biaxial residual stresses,” Int. Appl. Mech., 30, No. 1, 1–14 (1994).

    Article  ADS  Google Scholar 

  75. A. N. Guz, Dynamics of Compressible Viscous Fluid [in Russian], A.S.K., Kyiv (1998).

    Google Scholar 

  76. A. N. Guz, “Compressible, viscous fluid dynamics (review). Part I,” Int. Appl. Mech., 36, No. 1, 14–39 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  77. A. N. Guz, “Necessary and sufficient conditions for fescription of the motion of objects in a viscous fluid under ultrasonic actions,” Int. Appl. Mech., 36, No. 2, 197–202 (2000).

    Article  ADS  Google Scholar 

  78. A. N. Guz, “The dynamics of a compressible viscous liquid (review). II,” Int. Appl. Mech., 36, No. 3, 281–302 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  79. A. N. Guz, Elastic Waves in Bodies with Initial (Residual) Stresses [in Russian], A.S.K., Kyiv (2004).

  80. A. N. Guz and A. M. Bagno, “Stoneley waves on the interface of an elastic half-space with initial stresses and a viscous compressible fluid,” Int. Appl. Mech., 20, No. 12, 1089–1092 (1984).

    ADS  MATH  Google Scholar 

  81. A. N. Guz and A. M. Bagno, “Effect of the prestresses on the velocities of waves in a prestrained compressible layer contacting with a liquid half-space,” Dokl. AN SSSR, 329, No. 6, 715–717 (1993).

    Google Scholar 

  82. A. N. Guz, A. M. Bagno, and G. I. Shchuruk, “Axisymmetric elastic waves in an orthotropic cylindrical shell containing a compressible viscous fluid,” Dokl. AN USSR, Ser. A, No. 9, 41–46 (1989).

  83. O. M. Guz, N. V. Gerashchenko, and O. P. Zhuk, “Effect of an acoustic wave on a cylindrical particle near a flat solid boundary,” Dop. NAN Ukrainy, No. 2, 52–56 (1996).

  84. A. N. Guz and V. T. Golovchan, Diffraction of Elastic Waves in Multiply Connected Bodies [in Russian], Naukova Dumka, Kyiv (1972).

    MATH  Google Scholar 

  85. A. N. Guz and A. P. Zhuk, “Hydrodynamic forces acting in an acoustic field in a viscous fluid,” Dokl. AN SSSR, 266, No. 1, 32–35 (1982).

    MathSciNet  MATH  Google Scholar 

  86. A. N. Guz and A. P. Zhuk, “Nonlinear problems in the theory of small vibrations of particles in a compressible viscous fluid,” in: Proc. 9th Int. Conf. on Nonlinear Vibrations: Application of Methods of Nonlinear Vibration Theory in Mechanics, Physics, Electronics, and Biology [in Russian], 3, Naukova Dumka, Kyiv (1984), pp. 85–88.

  87. A. N. Guz and A. P. Zhuk, “Forces acting on a spherical particle in an acoustic field in a viscous fluid,” Sov. Phys. Dokl., 29, 98 (1984).

    ADS  MATH  Google Scholar 

  88. A. N. Guz and A. P. Zhuk, “Hydrodynamic interaction of two spherical particles in an acoustic wave field in an ideal fluid,” Dokl. AN SSSR, 279, No. 3, 566–570 (1984).

    ADS  MATH  Google Scholar 

  89. A. N. Guz and A. P. Zhuk, “Motion of two parallel cylinders in an acoustic wave field in a viscous fluid,” Izv. AN SSSR, Mekh. Tverd. Tela, No. 6, 158–164 (1990).

  90. A. N. Guz and A. P. Zhuk, “Effect of an acoustic wave on solid particles in a fluid,” in: Nonlinear Dynamic Problems for Machines [in Russian], Inst. Mashinovedeniya, Moscow (1992), pp. 43–52.

  91. A. N. Guz and A. P. Zhuk, “Dynamics of solid particles in a fluid under the action of an acoustic field. Model of a piecewise-homogeneous medium (review),” Int. Appl. Mech., 29, No. 5, 329–344 (1993).

    Article  ADS  Google Scholar 

  92. A. N. Guz and A. P. Zhuk, “Dynamics of particles near a plane boundary in the radiation field of an acoustic wave,” Int. Appl. Mech., 35, No. 10, 1040–1045 (1999).

    Article  ADS  MATH  Google Scholar 

  93. A. N. Guz and A. P. Zhuk, “Motion of a solid particle near a flat liquid boundary in the field of average forces of an acoustic wave,” in: Problems of Mechanics [in Russian], Fizmatlit, Moscow (2003), pp. 342–349.

  94. A. N. Guz and A. P. Zhuk, “Motion of solid particles in a liquid under the action of an acoustic field: The mechanism of radiation pressure,” Int. Appl. Mech., 40, No. 3, 246–265 (2004).

    Article  ADS  Google Scholar 

  95. A. N. Guz and A. P. Zhuk, “Motion of solid particles under the action of an acoustic field in a fluid,” Vol. 5 of the six-volume series A. N. Guz (ed.), Advances in Mechanics [in Russian], Litera, Kyiv (2009), pp. 144–166.

  96. A. N. Guz and A. P. Zhuk, “Effect of acoustic radiation in a viscous liquid on a spherical drop of ideal liquid,” Int. Appl. Mech., 50, No. 6, 605–614 (2014).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  97. O. M. Guz, O. P. Zhuk, and N. V. Gerashchenko, “Motion of a cylinder near a flat solid surface in the radiation field of an acoustic wave,” Dop. NAN Ukrainy, No. 11, 61–65 (1994).

  98. A. N. Guz, A. P. Zhuk, and F. G. Makhort, Waves in a Prestressed Layer [in Russian], Naukova Dumka, Kyiv (1976).

    Google Scholar 

  99. A. N. Guz (ed.), S. Markus, L. Pust, et al., Dynamics of Bodies Interacting with a Medium [in Russian], Naukova Dumka, Kyiv (1991).

  100. A. N. Guz, F. G. Makhort, and O. I. Gushcha, An Introduction to Acoustoelasticity [in Russian], Naukova Dumka, Kyiv (1977).

    Google Scholar 

  101. A. N. Guz, F. G. Makhort, O. I. Gushcha, and V. K. Lebedev, Fundamentals of the Ultrasonic Nondestructive Stress Analysis of Solids [in Russian], Naukova Dumka, Kyiv (1974).

    Google Scholar 

  102. S. D. Danilov, “Average force acting on a small sphere in a traveling wave field in a viscous fluid,” Akust. Zh., 31, No. 1, 45–49 (1985).

    ADS  MathSciNet  Google Scholar 

  103. S. D. Danilov and M. A. Mironov, “One-dimensional modeling of average forces in acoustics,” Akust. Zh., 30, No. 3, 306–309 (1984).

    Google Scholar 

  104. S. D. Danilov and M. A. Mironov, “Radiation pressure force acting on a small particle in an acoustic field,” Akust. Zh., 30, No. 6, 467–473 (1984).

    Google Scholar 

  105. S. D. Danilov and M. A. Mironov, “Radiation pressure force acting on a small scatterer moving in a uniform isotropic field,” Akust. Zh., 36, No. 1, 21–24 (1990).

    ADS  Google Scholar 

  106. A. P. Zhuk, “Stoneley waves in a prestressed medium,” Prikl. Mekh., 16, No. 1, 113–116 (1980).

    MathSciNet  Google Scholar 

  107. O. P. Zhuk, “Stoneley waves at the interface between a fluid and a prestressed body,” Dop. AN URSR, Ser. A, No. 4, 36–40 (1980).

  108. A. P. Zhuk, “Interaction of a sound wave with solid particles in a viscous fluid,” Int. Appl. Mech., 19, No. 11, 1013–1020 (1983).

    ADS  MathSciNet  MATH  Google Scholar 

  109. A. P. Zhuk, “Average hydrodynamic force acting on a spherical particle in an acoustic field in a viscous fluid,” Prikl. Mekh., 20, No. 1, 126–127 (1984).

    MathSciNet  Google Scholar 

  110. A. P. Zhuk, “Hydrodynamic interaction of two spherical particles from sound waves,” Int. Appl. Mech., 20, No. 9, 875–880 (1984).

    ADS  MathSciNet  MATH  Google Scholar 

  111. A. P. Zhuk, “Hydrodynamic interaction of two spherical particles due to sound waves propagating perpendicularly to the center line,” Int. Appl. Mech., 21, No. 3, 307–312 (1985).

    ADS  MATH  Google Scholar 

  112. A. P. Zhuk, “Radiation force acting on a cylindrical particle in a sound field,” Int. Appl. Mech., 22, No. 7, 689–693 (1986).

    ADS  MathSciNet  MATH  Google Scholar 

  113. A. P. Zhuk, “Interaction of two parallel cylinders located in tandem along the direction of sound wave propagation,” Int. Appl. Mech., 23, No. 8, 782–788 (1987).

    ADS  MATH  Google Scholar 

  114. A. P. Zhuk, “Interaction of two parallel cylinders in the propagation of a sound wave perpendicular to the plane of the axial lines,” Int. Appl. Mech., 23, No. 11, 1101–1106 (1987).

    ADS  MathSciNet  MATH  Google Scholar 

  115. A. P. Zhuk, “Interaction of a solid cylinder with a sound wave in a viscous fluid,” Int. Appl. Mech., 24, No. 1, 94–99 (1988).

    ADS  MathSciNet  MATH  Google Scholar 

  116. A. P. Zhuk, “Motion of a cylinder in the radiation field of a standing acoustic wave,” Prikl. Mekh., 25, No. 3, 123–126 (1989).

    Google Scholar 

  117. A. P. Zhuk, “Interaction of two spherical bodies in an ideal fluid through which an acoustic wave propagates,” Dokl. AN USSR, Ser. A, No. 5, 30–33 (1989).

  118. A. P. Zhuk, “Applicability of the theory of viscoelasticity to problems of the interaction between an acoustic wave and rigid bodies in a viscous fluid,” Dokl. AN USSR, Ser. A, No. 6, 35–38 (1989).

  119. A. P. Zhuk, “Interaction of two parallel circular cylinders in an ideal fluid through which an acoustic wave propagates,” Dokl. AN USSR, Ser. A, No. 8, 28–32 (1989).

  120. A. P. Zhuk, “Interaction of two bodies in an ideal fluid through which a plane acoustic wave propagates,” in: Proc. All-Union Symp. on Interaction of Acoustic Waves with Elastic Bodies (Tallinn, October 26–27, 1989) [in Russian], Tallinn (1989), pp. 92–95.

  121. A. P. Zhuk, “Using the theory of viscoelasticity to study the interaction of an acoustic wave with a cylinder in a viscous fluid,” Dokl. AN USSR, Ser. A, No. 3, 49–52 (1990).

  122. A. P. Zhuk, “Using the theory of viscoelasticity to study the interaction of two parallel cylinders in a viscous fluid through which an acoustic wave propagates,” Dokl. AN USSR, Ser. A, No. 4, 42–45 (1990).

  123. A. P. Zhuk, “Action of an acoustic wave on a system of two spherical bodies in an ideal fluid,” Int. Appl. Mech., 26, No. 5, 510–514 (1990).

    ADS  MathSciNet  MATH  Google Scholar 

  124. A. P. Zhuk, “Action of an acoustic wave on a system of two parallel circular cylinders in an ideal fluid,” Int. Appl. Mech., 27, No. 1, 101–106 (1991).

    ADS  MATH  Google Scholar 

  125. A. P. Zhuk, “Using the theory of viscoelasticity to study the interaction of an acoustic wave with a spherical particle in a viscous fluid,” Dokl. AN USSR, Ser. A, No. 2, 30–34 (1991).

  126. A. P. Zhuk, “A study of the interaction of an acoustic wave in a viscous liquid with two cylinders placed in parallel,” Int. Appl. Mech., 27, No. 3, 321–327 (1991).

    ADS  MATH  Google Scholar 

  127. A. P. Zhuk, “Effect of an acoustic wave on a system of two spheres in a viscous fluid,” Prikl. Mekh., 29, No. 2, 110–116 (1993).

    MATH  Google Scholar 

  128. O. P. Zhuk, “Effect of the radiation force on a solid sphere in a fluid flow,” Dop. NAN Ukrainy, No. 7, 50–54 (2000).

  129. O. P. Zhuk, “Motion of a system of solid particles in the radiation field of an acoustic wave,” Visn. Kyiv. Nats. Univ. im. T. Shevchenka, Ser. Fiz.-Mat. Nauky, No. 5, 275–279 (2001).

  130. A. P. Zhuk, “Effect of acoustic radiation on a spherical drop of liquid,” Int. Appl. Mech., 43, No. 7, 726–733 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  131. O. P. Zhuk, “Motion of a spherical liquid drop under the radiation force of an acoustic field,” Dop. NAN Ukrainy, No. 7, 55–59 (2007).

  132. O. P. Zhuk, “Effect of acoustic radiation forces on a spherical particle near a flat liquid surface,” Dop. NAN Ukrainy, No. 7, 71–76 (2008).

  133. A. P. Zhuk, “Dynamics of a spherical particle near a flat liquid boundary under acoustic radiation forces,” Int. Appl. Mech., 44, No. 11, 1223–1232 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  134. O. P. Zhuk, V. D. Kubenko, and Ya. O. Zhuk, “The radiation force of a plane acoustic wave acting on a spherical body in a cylindrical cavity filled with a fluid,” Dop. NAN Ukrainy, No. 9, 48–54 (2012).

  135. A. P. Zhuk, V. D. Kubenko, and Ya. A. Zhuk, “Acoustic radiation acting on a liquid sphere in a circular cylinder filled with a fluid,” Int. Appl. Mech., 49, No. 5, 501–511 (2013).

  136. L. K. Zarembo and V. A. Krasil’nikov, Introduction to Nonlinear Acoustics [in Russian], Nauka, Moscow (1966).

    Google Scholar 

  137. L. K. Zarembo and V. I. Timoshenko, Nonlinear Acoustics [in Russian], Izd. MGU, Moscow (1984).

    Google Scholar 

  138. P. V. Zinin, V. M. Levin, O. I. Lobkis, and R. G. Maev, “Radiation pressure forces in the focal region of an acoustic microscope,” Akust. Zh., 32, No. 6, 785–790 (1986).

    Google Scholar 

  139. I. N. Kanevskii, “Constant forces in an acoustic field (review), Akust. Zh., 7, No. 1, 3–17 (1961).

    MathSciNet  Google Scholar 

  140. G. L. Komissarova, “Solution of a problem concerning propagation of elastic waves in a fluid-containing cylinder,” Int. Appl. Mech., 26, No. 8, 735–738 (1990).

    ADS  MATH  Google Scholar 

  141. V. A. Krasil’nikov and V. V. Krylov, Introduction to Physical Acoustics [in Russian], Nauka, Moscow (1984).

    Google Scholar 

  142. R. M. Christensen, Theory of Viscoelasticity. An Introduction, Academic Press, New York (1971).

    Google Scholar 

  143. S. V. Kuznetsov, “Lamb waves in anisotropic plates (review),” Acoust. Phys., 60, No. 1, 95–103 (2014).

    Article  ADS  Google Scholar 

  144. L. D. Landau and V. M. Livshitz, Fluid Mechanics, Vol. 6 of Course of Theoretical Physics, Pergamon Press, New York (1987).

  145. M. E. McIntyre, “On the ‘wave momentum’ myth,” J. Fluid Mech., 106, 331–347 (1981).

    Article  ADS  MATH  Google Scholar 

  146. L. Mandel’shtam, “Group velocity in a crystal lattice,” Zh. Eksp. Teor. Fiz., 15, No. 9, 475–478 (1945).

    Google Scholar 

  147. E. P. Mednikov, Acoustic Coagulation and Precipitation of Aerosols, Consultants Bureau, New York (1965).

    Google Scholar 

  148. T. R. Meeker and A. H. Meitzler, “Guided wave propagation in elongated cylinders and plates,” in W. P. Mason (ed.), Physical Acoustics: Principles and Methods, Vol. 1A, Academic, New York (1964), pp. 111–167.

    Chapter  Google Scholar 

  149. P. M. Morse and H. Feshbach, Methods of Theoretical Physics, McGraw–Hill, New York (1953).

    MATH  Google Scholar 

  150. O. V. Rudenko and S. I. Soluyan, Theoretical Fundamentals of Nonlinear Acoustics [in Russian], Nauka, Moscow (1975).

    MATH  Google Scholar 

  151. J. W. Strutt (Baron Rayleigh), The Theory of Sound, Vol. II, Macmillan, London (1896).

  152. N. L. Shirokova, “Coagulation of aerosols,” in: Physical Fundamentals of Ultrasonic Technology [in Russian], Vol. 3, Nauka, Moscow (1970).

  153. G. I. Shchuruk, “Torsional waves in a cylindrical shell containing a compressible viscous fluid,” Int. Appl. Mech., 19, No. 4, 117–121 (1983).

    Google Scholar 

  154. J. Avatani, “Studies on acoustic radiation pressure,” J. Acoust. Soc. America, 27, No. 2, 278–286 (1955).

    Article  ADS  MathSciNet  Google Scholar 

  155. A. Bagno, “Propagation of waves in pre-stressed elastic cylinders, containing liquid,” in: Proc. Int. Conf. EAHE. Engineering Aerohydroelasticity, 2, Prague, December 5–8, (1989), pp. 180–184.

  156. R. T. Bayer, “Radiation pressure—the history of mislabeled fluid,” J. Acoust. Soc. America, 63, 1025–1030 (1978).

    Article  ADS  Google Scholar 

  157. R. T. Bayer, “Radiation pressure in a sound wave,” Amer. J. Phys., 18, 25 (1950).

    Article  ADS  Google Scholar 

  158. K. Beissner, “Acoustic radiation pressure in the near field,” J. Sound Vibr., 93, No. 4, 537–548 (1984).

    Article  ADS  Google Scholar 

  159. M. A. Biot, “Propagation of elastic waves in a cylindrical bare containing a fluid,” J. Appl. Phys., 23, No. 9, 997–1005 (1952).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  160. G. Brankov, A. Rachev, and V. Petrov, “Propagation of pulse waves in prestressed arteries,” Biomekh., 1, 17–26 (1974).

    Google Scholar 

  161. F. E. Borgnis, “Theory of acoustic radiation pressure,” Rev. Mod. Phys., 25, No. 3, 653–664 (1953).

    Article  ADS  MATH  Google Scholar 

  162. L. Brillouin, “Sur les tensions de radiation,” Ann. de Physique, 10, No. 4, 528–586 (1925).

    MATH  Google Scholar 

  163. L. Brillouin, “Les pressions de radiation et leur aspect tensorial,” J. Phys. et radium, 17, No. 5, 370 (1956).

  164. F. Cai, L. Meng, Y. Pan, and H. Zheng, “Computation of the acoustic radiation force using the finite-difference time-domain method,” J. Acoust. Soc. Am., 128, 1617–1622 (2010).

    Article  ADS  Google Scholar 

  165. A. Doinnikov, “Radiation force due to a spherical sound field on a rigid sphere in a viscous fluid,” J. Acoust. Soc. America, 96, No. 5, 3100–3105 (1994).

    Article  ADS  Google Scholar 

  166. V. V. Dzyuba and V. D. Kubenko, “Axisymmetric interaction problem for a sphere pulsating inside an elastic cylindrical shell filled with and immersed into a liquid,” Int. Appl. Mech., 38, No. 10, 1210–1219 (2002).

    Article  ADS  MATH  Google Scholar 

  167. K.A. Fisher and R. Miles, “Modeling the acoustic radiation force in microfluidic chambers,” J. Acoust. Soc. Am., 123, 1862–1865 (2008).

    Article  ADS  Google Scholar 

  168. A. N. Guz, “On linearized problems of elasticity theory,” Int. Appl. Mech., 6, No. 2, 109–116 (1970).

    ADS  MathSciNet  Google Scholar 

  169. A. N. Guz, “Analogies between linearized and linear elasticity theory problems for homogeneous initial states,” Int. Appl. Mech., 8, No. 5, 549–552 (1972).

    ADS  Google Scholar 

  170. A. N. Guz, “Elastic waves in bodies with initial (residual) stresses,” Int. Appl. Mech., 38, No. 1, 23–59 (2002).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  171. A. N. Guz, Dynamics of Compressible Viscous Fluid, Cambridge Scientific Publishers, Cambridge (2009).

    MATH  Google Scholar 

  172. A. N. Guz, “On the foundations of the ultrasonic non-destructive determination of stresses in near-the-surface layers of materials. Review,” J. Phys. Sci. Appl., 1, No. 1, June, 1–15 (2011).

  173. A. N. Guz, “Ultrasonic nondestructive method for stress analysis of structural members and near-surface layers of materials: Focus on Ukrainian research (review),” Int. Appl. Mech., 50, No. 3, 231–252 (2014).

    Article  Google Scholar 

  174. A. N. Guz, V. D. Kubenko, and A. E. Babaev, “Dynamics of shell systems interacting with a liquid,” Int. Appl. Mech., 38, No. 3, 260–301 (2002).

    Article  ADS  MATH  Google Scholar 

  175. A. N. Guz and A. P. Zhuk, “On nonlinear interaction of solid particles with a sound wave in viscous liquid,” IUTAM Symp., Tallin, ESSR, 1982, Springer Verlag, Berlin (1983), pp. 365–378.

  176. A. N. Guz and A. P. Zhuk, “The dynamics of rigid bodies near the wall in a compressible viscous fluid under the action of acoustic waves,” in: A. N. Guz (ed.), Dynamics of Compressible Viscous Fluid, An International Series of Scientific Monographs, Textbooks and Lecture Notes “Stability, Oscillations and Optimization of System,” Appendix II, Cambridge Scientific Publishers (2009), pp. 367–395.

  177. A. N. Guz and A. P. Zhuk, “Dynamics of a rigid cylinder near a plane boundary in the radiation field of an acoustic wave,” J. Fluids Struct., 25, 1206–1212 (2009).

    Article  ADS  Google Scholar 

  178. T. Hazegava, M. Ochi, and K. Matsuzava, “Acoustic radiation force on a solid elastic sphere in a spherical wave field,” J. Acoust. Soc. America, 69, 937–943 (1981).

    Article  ADS  Google Scholar 

  179. E. M. J. Herray, “Experimental studies on acoustic radiation pressure,” J. Acoust. Soc. America, 25, No. 5, 981–896 (1955).

    Google Scholar 

  180. L. V. King, “On the acoustic radiation pressure on sphere,” Proc. Roy. Soc., Ser. A, 147, No. 861, 212–240 (1934).

  181. V. D. Kubenko and V. V. Dzyuba, “Diffraction of a plane acoustic wave by a rigid sphere in a cylindrical cavity: An axisymmetric problem,” Int. Appl. Mech., 45, No. 4, 424–437 (2009).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  182. H. Lamb, “On waves in an elastic plate,” Proc. Roy. Soc. London, A, 93, No. 648, 114–128 (1917).

    Article  ADS  MATH  Google Scholar 

  183. G. Maidanik, “Acoustical radiation pressure due to incident plane progressive waves on spherical objects,” J. Acoust. Soc. America, 29, No. 6, 738–742 (1957).

    Article  ADS  MathSciNet  Google Scholar 

  184. G. Maidanik, “Torques due to acoustical radiation pressure,” J. Acoust. Soc. America, 30, No. 7, 620 (1958).

  185. P. L. Marston, “Radiation force of a belicoidal Bessel beam on a sphere,” J. Acoust. Soc. Am., 125, 3539–3547 (2009).

    Article  ADS  Google Scholar 

  186. A. H. Meitzler, “Backward-wave transmission of stress pulses in elastic cylinders and plates,” J. Acoust. Soc. Amer., 38, No. 5, 835–842 (1965).

    Article  ADS  Google Scholar 

  187. H. Olsen, W. Romberg, and H. Wergeland, “Radiation force on bodies in a sound field,” J. Acoust. Soc. America, 30, No. 1, 69–76 (1958).

    Article  ADS  MathSciNet  Google Scholar 

  188. H. Olsen, H. Wergeland, and P. J. Westervelt, “Acoustic radiation force,” J. Acoust. Soc. America, 30, No. 7, 633–638 (1958).

    Article  ADS  MathSciNet  Google Scholar 

  189. H. T. O’Neyl, “Theory of focusing radiation,” J. Acoust. Soc. America, 21, 516–526 (1949).

    Article  Google Scholar 

  190. M. Ottenio, M. Destrade, and R. W. Ogden, “Acoustic waves at the interface of a pre-stressed incompressible elastic solid and a viscous fluid,” Int. J. Non-Linear Mech., 42, No. 2, 310–320 (2007).

    Article  ADS  Google Scholar 

  191. L. Pochhammer, “Uber die Fortpflanzungeschwindigkeiten Schwingungen in einem unbergrawzten isotropen Kreiscylinder,“ J. Reine und Angew. Math., 81, No. 4, 324–336 (1876).

  192. J. W. Rayleigh, “On waves propagated along the plane surface of an elastic solid,” Proc. Lond. Math. Soc., 17, No. 253, 4–11 (1885/1886).

  193. Rayleigh (J. W. Strutt), “On the momentum and pressure of gaseous vibrations and on the connexion with virial theorem,” Phil. Mag., 10, No. 47, 364–374 (1905).

  194. G. T. Silva, “An expression for the radiation force exerted by an acoustic beam with arbitrary wavefront,” J. Acoust. Soc. America, 130, 3541–3544 (2011).

    Article  ADS  Google Scholar 

  195. W. E. Smith, “Average radiation-pressure forces produced by sound fields,” Austral. J. Phys., 17, No. 3, 389 (1964).

  196. W. E. Smith, “Radiation pressure forces in terms of impedance, admittance and scattering matrices,” J. Acoust. Soc. America, 37, No. 5, 932 (1965).

  197. R. Stoneley, “The elastic waves at the interface of separation of two solids,” Proc. Roy. Soc. London, A, 106, No. 732, 416–429 (1924).

    Article  ADS  MATH  Google Scholar 

  198. I. Tolstoy and E. Usdin, “Wave propagation in elastic plates: low and high mode dispersion,” J. Acoust. Soc. America, 29, No. 1, 37–42 (1957).

    Article  ADS  Google Scholar 

  199. P. J. Westervelt, “Acoustic radiation pressure,” J. Acoust. Soc. America, 29, No. 1, 26–29 (1957).

    Article  ADS  Google Scholar 

  200. K. Yosioka and Y. Kawasima, “Acoustic radiation pressure on compressible sphere,” Acoustic, 5, No. 3, 167–173 (1955).

  201. A. P. Zhuk, “Interaction of solid bodies immersed in liquid in the acoustic wave field,” in: Proc. Int. Conf. EANE on Engineering Aero-hydroelasticity, 2, Prague (1989), pp. 310–315.

  202. A. P. Zhuk, V. D. Kubenko, and Ya. A. Zhuk, “Acoustic radiation force on a spherical particle in a fluid-filled cavity,” J. Acoust. Soc. America, 132 (4), 2189–2197 (2012).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Zhuk.

Additional information

Translated from Prikladnaya Mekhanika, Vol. 52, No. 5, pp. 3–77, September–October, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guz, A.N., Zhuk, A.P. & Bagno, A.M. Dynamics of Elastic Bodies, Solid Particles, and Fluid Parcels in a Compressible Viscous Fluid (Review). Int Appl Mech 52, 449–507 (2016). https://doi.org/10.1007/s10778-016-0770-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-016-0770-6

Keywords

Navigation