Skip to main content
Log in

Rayleigh wave in a quadratic nonlinear elastic half-space (Murnaghan model)

  • Published:
International Applied Mechanics Aims and scope

The nonlinear equations that underlie the analysis of classical Rayleigh waves are derived for the two-dimensional case of nonlinear elastic deformation described by the Murnaghan model. In addition to the case of presence of both geometrical and physical nonlinearities, two special cases are considered where one only type of nonlinearity is taken into account. It is shown that unlike the one-dimensional problems for plane waves where only three types of nonlinear interaction should be allowed for, the two-dimensional problems should include 24 types of nonlinear interaction. In the case of geometrical nonlinearity alone, a preliminary analysis of the nonlinear equations is carried out. Second-order equations are derived. The second approximation includes the second harmonics of the wave itself and its attenuating amplitude and is nonlinearly dependent on the initial amplitude of the Rayleigh wave and linearly increasing with the distance traveled by the wave

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. I. A. Viktorov, Surface Acoustic Waves in Solids [in Russian], Nauka, Moscow (1981).

    Google Scholar 

  2. I. A. Viktorov, Ultrasonic Rayleigh and Lamb Waves in Engineering: Basic Physics [in Russian], Nauka, Moscow (1966).

    Google Scholar 

  3. A. N. Guz, Elastic Waves in Bodies with Initial (Residual) Stresses [in Russian], A.S.K., Kyiv (2004).

    Google Scholar 

  4. A. N. Guz, J. J. Rushchitsky, and I. A. Guz, Introduction to the Mechanics of Nanocomposites [in Russian], Akademperiodika, Kyiv (2010).

    Google Scholar 

  5. L. K. Zarembo and V. A. Krasil’nikov, Introduction to Nonlinear Acoustics [in Russian], Nauka, Moscow (1966).

    Google Scholar 

  6. V. V. Krylov and V. A. Krasil’nikov, Introduction to Physical Acoustics [in Russian], Nauka, Moscow (1986).

  7. J. J. Rushchitsky, Elements of Mixture Theory [in Russian], Naukova Dumka, Kyiv (1991).

    Google Scholar 

  8. J. J. Rushchitsky and S. I. Tsurpal, Waves in Microstructural Materials [in Ukrainian], Inst. Mekh. S. P. Timoshenka, Kyiv (1998).

    Google Scholar 

  9. L. I. Sedov, A Course in Continuum Mechanics, Vol. 2, Wolters-Noordhoff, Groningen (1972).

    Google Scholar 

  10. J. D. Achenbach, Wave Propagation in Elastic Solids, North Holland, Amsterdam (1973).

    MATH  Google Scholar 

  11. C. Cattani and J. J. Rushchitsky, Wavelet and Wave Analysis as Applied to Materials with Micro or Nanostructure, World Scientific, Singapore–London (2007).

    Book  MATH  Google Scholar 

  12. C. H. Chapman, Fundamentals of Seismic Wave Propagation, University Press, Cambridge (2004).

    Book  Google Scholar 

  13. G. W. Farnell, “Properties of elastic surface waves,” in: W. P. Mason and R. N. Thurston (eds.), Physical Acoustics, Principles and Methods, Vol. 6, Academic Press, New York (1970), pp. 109–166.

    Google Scholar 

  14. G. W. Farnell and E. L. Adler, “Elastic wave propagation in thin layers,” in: W. P. Mason and R. N. Thurston (eds.), Physical Acoustics, Principles and Methods, Vol. 9, Academic Press, New York (1972), pp. 35–127.

    Google Scholar 

  15. G. W. Farnell, “Surface acoustic waves,” in: H. Matthews (ed.), Surface Wave Filters. Design, Construction, and Use, Wiley, New York (1977), pp. 8–54.

    Google Scholar 

  16. M. F. Hamilton, Yu. A. Il’inskii, and E. A. Zabolotskaya, “Model equations for nonlinear surface waves,” J. Acoust. Soc. Am., 103, No. 5, 2925 (1998).

    Article  ADS  Google Scholar 

  17. G. A. Holzapfel, Nonlinear Solid Mechanics. A Continuum Approach for Engineering, John Wiley & Sons, Chichester (2006).

    Google Scholar 

  18. E. Yu. Knight, M. F. Hamilton, Yu. A. Il’inski, and E. A. Zabolotskaya, “Extensions of the theory for nonlinear Rayleighwaves,” J. Acoust. Soc. Am., 96, No. 5, 3322 (1994).

    ADS  Google Scholar 

  19. Minghe Liu, Jin-Yeon Kim, Laurence Jacobs, and Jianmin Qu, “Experimental study of nonlinear Rayleigh wave propagation in shot-peened aluminum plates—feasibility of measuring residual stress,” NDT&E Int., 44, No. 1, 67–74 (2010).

    Google Scholar 

  20. F. D. Murnaghan, Finite Deformation in Elastic Solid, John Wiley, New York (1951).

    Google Scholar 

  21. J. W. Rayleigh, “On waves propagated along the plane surface of an elastic body,” Proc. Math. Soc. London, 17, 4–11 (1885).

    Article  MATH  Google Scholar 

  22. J. J. Rushchitsky, “Interaction of waves in solid mixtures,” Appl. Mech. Rev., 52, No. 2, 35–74 (1999).

    Article  ADS  Google Scholar 

  23. J. J. Rushchitsky, “Quadratically nonlinear cylindrical hyperelastic waves: Derivation of wave equations for plane-strain state,” Int. Appl. Mech., 41, No. 5, 496–505 (2005).

    Article  ADS  Google Scholar 

  24. J. J. Rushchitsky, “Quadratically nonlinear cylindrical hyperelastic waves: Derivation of wave equations for axisymmetric and other states,” Int. Appl. Mech., 41, No. 6, 646–656 (2005).

    Article  MathSciNet  ADS  Google Scholar 

  25. J. J. Rushchitsky, “Quadratically nonlinear cylindrical hyperelastic waves: Primary analysis of evolution,” Int. Appl. Mech., 41, No. 7, 770–777 (2005).

    Article  MathSciNet  ADS  Google Scholar 

  26. J. J. Rushchitsky, “Analysis of a quadratically nonlinear hyperelastic plane longitudinal wave,” Int. Appl. Mech., 45, No. 2, 148–158 (2009).

    Article  ADS  Google Scholar 

  27. J. J. Rushchitsky, S. V. Sinchilo, and I. N. Khotenko, “Generation of the second, fourth, eighth, and subsequent harmonics by a quadratic nonlinear hyperelastic longitudinal plane wave,” Int. Appl. Mech., 46, No. 6, 649–659 (2010).

    Article  ADS  Google Scholar 

  28. J. J. Rushchitsky and E. A. Khotenko, “On numerical modeling of generation of the second, fourth, and eighth harmonics of a hyperelastic plane longitudinal wave,” Int. Appl. Mech., 45, No. 4, 500–508 (2009).

    Google Scholar 

  29. R. Sgoureva-Philippakos, Nonlinear Effects in Elastic Rayleigh Waves, PhD Thesis, California Institute of Technology (1998).

  30. K. Tanuma, “Stroh formalism and Rayleigh waves,” J. Elasticity, 89, 5–154 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  31. P. J. Vella, T. C. Padmore, G. I. Stegeman, and V. M. Ristic, “Nonlinear surface-wave interactions: Parametric mixing and harmonic generation,” J. Appl. Physics, 45, No. 5, 1993–2006 (1974).

    Article  ADS  Google Scholar 

  32. E. A. Zabolotskaya, “Nonlinear propagation of plane and circular Rayleigh waves in isotropic solids,” J. Acoust. Soc. Am., 91, No. 5, 2569–2575 (1992).

    Article  ADS  Google Scholar 

  33. E. A. Zabolotskaya, Yu. A. Il’inskii, and M. F. Hamilton, “Nonlinear Rayleigh waves in soft tissue,” J. Acoust. Soc. Am., 119, No. 5, 3319 (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. J. Rushchitsky.

Additional information

Translated from Prikladnaya Mekhanika, Vol. 47, No. 3, pp. 50–58, May 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rushchitsky, J.J., Khotenko, E.A. Rayleigh wave in a quadratic nonlinear elastic half-space (Murnaghan model). Int Appl Mech 47, 268–275 (2011). https://doi.org/10.1007/s10778-011-0457-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-011-0457-y

Keywords

Navigation