Skip to main content
Log in

Spline-Approximation Method Applied to Solve Natural-Vibration Problems for Rectangular Plates of Varying Thickness

  • Published:
International Applied Mechanics Aims and scope

Abstract

The natural vibrations of anisotropic rectangular plates of varying thickness with complex boundary conditions are studied using the spline-collocation and discrete-orthogonalization methods. The basic principles of the approach are outlined. The natural vibrations of orthotropic plates with parabolically varying thickness are calculated. The results (natural frequencies and modes) obtained with different boundary conditions are analyzed

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. A. Ya. Grigorenko, “Spline-collocation analysis of the natural vibrations of rectangular plates with varying thickness,” Prikl. Mekh., 26, No.12, 116–119 (1990).

    MathSciNet  Google Scholar 

  2. Ya. M. Grigorenko, E. I. Bespalova, A. B. Kitaigorodskii, and A. I. Shinkar', Natural Vibrations of Members in Shell Structures [in Russian], Naukova Dumka, Kiev (1986).

    Google Scholar 

  3. L. V. Kurpa and A. V. Chistilina, “Studying the natural vibrations of laminated shallow shells and plates with a complex planform,” Probl. Prochn., No. 2, 112–123 (2003).

    Google Scholar 

  4. S. G. Lekhnitskii, Anisotropic Plates [in Russian], Gostekhizdat, Moscow (1957).

    Google Scholar 

  5. P. M. Varvak and A. F. Ryabov (eds.), Elasticity Theory Handbook [in Russian], Budivel'nyk, Kiev (1971).

    Google Scholar 

  6. F. C. Appl and N. R. Bayers, “Fundamental frequency of simply supported rectangular plates with linearly varying thickness,” Trans. ASME, Ser. E. J. Mech., 32, 163–168 (1965).

    Google Scholar 

  7. A. N. Bercin, “Free vibration solution for clamped orthotropic plates using the Kantorovich method, ” J. Sound Vibr., 196, No.2, 243–247 (1996).

    Article  Google Scholar 

  8. R. B. Bnat, P. A. A. Laura, R. Gutierrez, V. N. Cortinez, and S. Sanzi, “Numerical experiments on the determination of natural frequencies of transverse vibrations of rectangular plates of non-uniform thickness,” J. Sound Vibr., 138, No.2, 205–219 (1990).

    ADS  Google Scholar 

  9. R. B. Bnat, “Natural frequencies of rectangular plates using characteristic orthogonal polynomials in Rayleigh-Ritz method,” J. Sound Vibr., 102, No.4, 493–499 (1985).

    Google Scholar 

  10. R. B. Bnat, “Flexural vibration of polygonal plates using characteristic orthogonal polynomials in two variables,” J. Sound Vibr., 114, No.1, 65–71 (1987).

    Google Scholar 

  11. S. K. Chaudhuri, “Large amplitude free vibration of square plate of variable thickness,” J. Sound Vibr., 72, No.3, 143–147 (1984).

    ADS  Google Scholar 

  12. S. S. H. Chen, “Bending and vibration of plates of variable thickness,” Trans. ASME, Ser. B. J. Eng. for Industry, 98, No.1, 16–170 (Feb. 1976), 157–158 (1977).

    Google Scholar 

  13. K. F. Graff, Wave Motion in Elastic Solids, Dover, New York (1991).

    Google Scholar 

  14. D. J. Gorman, “Accurate free vibration analysis of clamped orthotropic plates by the method of superposition,” J. Sound Vibr., 140, No.3, 391–411 (1990).

    Article  ADS  Google Scholar 

  15. A. Ya. Grigorenko and T. V. Tregubenko, “Numerical and experimental analysis of natural vibration of rectangular plates with variable thickness,” Int. Appl. Mech., 36, No.2, 268–270 (2000).

    Article  Google Scholar 

  16. Ya. M. Grigorenko and S. N. Yaremchenko, “Stress analysis of orthotropic noncircular cylindrical shells of variable thickness in a refined formulation,” Int. Appl. Mech., 40, No.3, 266–274 (2004).

    Article  Google Scholar 

  17. Ya. M. Grigorenko and L. I. Zakhariichenko, “Studying the effect of the spatial frequency and amplitude of corrugation on the stress-strain state of cylindrical shells,” Int. Appl. Mech., 39, No.12, 1429–1435 (2003).

    Article  Google Scholar 

  18. Ya. M. Grigorenko and L. I. Zakhariichenko, “Stress-strain analysis of elliptic cylindrical shells under local loads,” Int. Appl. Mech., 40, No.10, 1157–1163 (2004).

    Google Scholar 

  19. S. F. Nog and Y. Araar, “Free vibration and buckling analysis of clamped rectangular plates of variable thickness by the Galerkin method,” J. Sound Vibr., 135, No.2, 263–274 (1989).

    ADS  Google Scholar 

  20. R. L. Ramkumar, P. C. Chen, and W. J. Sanders, “Free vibration solution for clamped orthotropic plates using Lagrangian multiplier technique,” Amer. Inst. Aeronaut. Astronaut. J., 25, 146–151 (1987).

    Google Scholar 

  21. T. Sakata and K. Hosokawa, “Vibrations of clamped orthotropic rectangular plates,” J. Sound Vibr., 125, No.4, 429–439 (1988).

    ADS  Google Scholar 

  22. J. S. Tomar, D. C. Gupta, and N. C. Jain, “Vibration of nonhomogeneous plates of variable thickness, ” J. Acous. Soc. Amer., 72, No.3, 851–855 (1982).

    ADS  Google Scholar 

  23. S. D. Yu. and W. L. Cleghorn, “Generic free vibration of orthotropic rectangular plates with clamped and simply supported edges,” J. Sound Vibr., 163, No.4, 439–450 (1993).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Prikladnaya Mekhanika, Vol. 41, No. 10, pp. 90–99, October 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grigorenko, A.Y., Efimova, T.L. Spline-Approximation Method Applied to Solve Natural-Vibration Problems for Rectangular Plates of Varying Thickness. Int Appl Mech 41, 1161–1169 (2005). https://doi.org/10.1007/s10778-006-0022-2

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-006-0022-2

Keywords

Navigation