Skip to main content
Log in

Analysis of Half-Asleep and Wakeup Strategy in Wireless Mesh/Relay Networks with Double-State Channel

  • Published:
International Journal of Wireless Information Networks Aims and scope Submit manuscript

Abstract

A distributed queue system is presented for wireless mesh/relay networks with half-asleep and wakeup strategy and double-state channel. Each node could receive/transmit data packets from itself or from other nodes by acting as a relay node. We model the process at a mesh/relay node as a queue system with two types of data packets: the relayed packets and the node’s own packets, and the former have higher priority with non-preemption than the latter. Based on the efficient power saving strategy, each node is considered to have two modes of operation: half-asleep and active. Meanwhile, owing to the requirement of the quality of service (QoS), a dynamic channel bonding strategy is proposed which will lead to the different service rates. To obtain the steady-state distribution of the queue length, we build a four-dimensional discrete time Markov chain, and give the major performance expressions. Moreover, some numerical experiments are provided to analyze the influence of various parameters on the performance measures. Finally, we obtain the Nash equilibrium solution for individual benefit and the socially optimal solution. In addition, a cooperative bargaining game is formulated by balancing the arrivals of the data packets to reach a satisfied agreement under QoS constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R. Bruno, M. Conti and E. Gregori, Mesh networks: commodity multihop ad hoc networks, IEEE Communications Magazine, Vol. 43, No. 3, pp. 123–132, 2005.

    Article  Google Scholar 

  2. T. Zhang, T. Li and Z. Ge, Research on wireless mesh network QoS based on M/M/n/m model under non-preemptive limited-priority, Computer Science, Vol. 41, pp. 135–138, 2014.

    Google Scholar 

  3. A. Fallahi and E. Hossain, Queueing analysis of distributed MAC in wireless ad hoc networks with differentiated services, IEEE International Conference on Communications, Vol. 8, pp. 3832–3837, 2006.

    Google Scholar 

  4. D. Niyato, E. Hossain and A. Fallahi, Sleep and wakeup strategies in solar-powered wireless sensor/mesh networks: performance analysis and optimization, IEEE Transactions on Mobile Computing, Vol. 6, No. 2, pp. 221–236, 2007.

    Article  Google Scholar 

  5. D. Niyato, E. Hossain and A. Fallahi, Analysis of different sleep and wakeup strategies in solar powered wireless sensor networks, IEEE International Conference on Communications, Vol. 7, pp. 3333–3338, 2006.

    Google Scholar 

  6. A. Fallahi, E. Hossain and A. S. Alfa, QoS and energy trade off in distributed energy-limited mesh/relay networks: a queuing analysis, IEEE Transactions on Parallel and Distributed Systems, Vol. 17, No. 6, pp. 576–592, 2006.

    Article  Google Scholar 

  7. D. R. Miller, Computation of steady-state probabilities for M/M/1 priority queues, Operations Research, Vol. 29, No. 5, pp. 945–958, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  8. Y. Zhao, S. Jin and W. Yue, Performance optimization of a dynamic channel bonding strategy in cognitive radio networks, Pacific Journal of Optimization, Vol. 9, No. 4, pp. 679–696, 2013.

    MathSciNet  MATH  Google Scholar 

  9. Y. Zhao, S. Jin and W. Yue, An adjustable channel bonding strategy in centralized cognitive radio networks and its performance optimization, Quality Technology and Quantitative Management, Vol. 12, No. 3, pp. 293–312, 2015.

    Article  Google Scholar 

  10. S. Jin, S. Chen and J. Zhang, Social optimization and pricing policy in cognitive radio networks with an energy saving strategy, Mobile Information Systems, Vol. 2016, No. 3, pp. 1–10, 2016.

    Google Scholar 

  11. W. Sun, P. Guo, N. Tian and S. Li, Relative priority policies for minimizing the cost of queueing systems with service discrimination, Applied Mathematical Modelling, Vol. 33, No. 11, pp. 4241–4258, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  12. M. Neuts, Matrix-Geometric Solutions in Stochastic Models, The Johns Hopkins University PressBaltimore, 1981.

    MATH  Google Scholar 

  13. A. Maaref and Y. Cao, User cooperation for 5G wireless access networks, International Journal of Wireless Information Networks, Vol. 22, No. 4, pp. 298–311, 2015.

    Article  Google Scholar 

  14. Q. Jing and Z. Zheng, Distributed resource allocation based on game theory in multi-cell OFDMA systems, International Journal of Wireless Information Networks, Vol. 16, pp. 44–50, 2009.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 61472342), Key Foundation of Higher Education Science and Technology Research of Hebei Province (No. ZD2017079), Youth Foundation of Higher Education Science and Technology Research of Hebei Province (No. QN2016016), and Innovation Foundation for Graduate Student of Yanshan University (No. 2017XJSS045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanyou Ma.

Appendix

Appendix

In order to simplify the matrices with complicated construction, we define some symbols as following:

$$\begin{aligned} \delta_{1c} & = \bar{\lambda }_{1} \bar{\lambda }_{2} \bar{\mu }_{1c} + \lambda_{1} \bar{\lambda }_{2} \mu_{1c} ,\quad \delta_{1} = \bar{\lambda }_{1} \bar{\lambda }_{2} \bar{\mu }_{1} + \lambda_{1} \bar{\lambda }_{2} \mu_{1} ;\quad \beta_{1c} = \bar{\lambda }_{1} \bar{\lambda }_{2} \mu_{2c} + \lambda_{1} \bar{\lambda }_{2} \mu_{2c} ,\quad \beta_{1} = \bar{\lambda }_{1} \bar{\lambda }_{2} \mu_{2} + \lambda_{1} \bar{\lambda }_{2} \mu_{2} ; \\ \delta_{2c} & = \bar{\lambda }_{1} \bar{\lambda }_{2} \mu_{1c} + \lambda_{1} \bar{\lambda }_{2} \mu_{1c} ,\quad \delta_{2} = \bar{\lambda }_{1} \bar{\lambda }_{2} \mu_{1} + \lambda_{1} \bar{\lambda }_{2} \mu_{1} ;\quad \beta_{2c} = \bar{\lambda }_{1} \bar{\lambda }_{2} \bar{\mu }_{2c} + \bar{\lambda }_{1} \lambda_{2} \mu_{2c} ,\quad \beta_{2} = \bar{\lambda }_{1} \bar{\lambda }_{2} \bar{\mu }_{2} + \bar{\lambda }_{1} \lambda_{2} \mu_{2} ; \\ \delta_{3c} & = \bar{\lambda }_{1} \bar{\lambda }_{2} \bar{\mu }_{1c} + \lambda_{1} \bar{\lambda }_{2} \bar{\mu }_{1c} ,\quad \delta_{3} = \bar{\lambda }_{1} \bar{\lambda }_{2} \bar{\mu }_{1} + \lambda_{1} \bar{\lambda }_{2} \bar{\mu }_{1} ;\quad \beta_{3c} = \bar{\lambda }_{1} \bar{\lambda }_{2} \bar{\mu }_{2c} + \lambda_{1} \bar{\lambda }_{2} \bar{\mu }_{2c} ,\quad \beta_{3} = \bar{\lambda }_{1} \bar{\lambda }_{2} \bar{\mu }_{2} + \lambda_{1} \bar{\lambda }_{2} \bar{\mu }_{2} ; \\ \delta_{4c} & = \bar{\lambda }_{1} \lambda_{2} \bar{\mu }_{1c} + \lambda_{1} \lambda_{2} \mu_{1c} ,\quad \delta_{4} = \bar{\lambda }_{1} \lambda_{2} \bar{\mu }_{1} + \lambda_{1} \lambda_{2} \mu_{1} ;\quad \beta_{4c} = \bar{\lambda }_{1} \lambda_{2} \mu_{2c} + \lambda_{1} \lambda_{2} \mu_{2c} ,\quad \beta_{4} = \bar{\lambda }_{1} \lambda_{2} \mu_{2} + \lambda_{1} \lambda_{2} \mu_{2} ; \\ \delta_{5c} & = \bar{\lambda }_{1} \lambda_{2} \mu_{1c} + \lambda_{1} \lambda_{2} \mu_{1c} ,\quad \delta_{5} = \bar{\lambda }_{1} \lambda_{2} \mu_{1} + \lambda_{1} \lambda_{2} \mu_{1} ;\quad \beta_{5c} = \bar{\lambda }_{1} \lambda_{2} \bar{\mu }_{2c} + \lambda_{1} \lambda_{2} \bar{\mu }_{2c} ,\quad \beta_{5} = \bar{\lambda }_{1} \lambda_{2} \bar{\mu }_{2} + \lambda_{1} \lambda_{2} \bar{\mu }_{2} . \\ \delta_{6c} & = \bar{\lambda }_{1} \lambda_{2} \bar{\mu }_{1c} + \lambda_{1} \lambda_{2} \bar{\mu }_{1c} ,\quad \delta_{6} = \bar{\lambda }_{1} \lambda_{2} \bar{\mu }_{1} + \lambda_{1} \lambda_{2} \bar{\mu }_{1} ; \\ \end{aligned}$$
  1. 1.

    The block \({\varvec{P}}_{00}\) is a (2 K + 3) dimensional matrix with its elements given by:

    $${\varvec{P}}_{00} = \left[ {\begin{array}{*{20}c} {\bar{\lambda }_{1} \bar{\lambda }_{2} } & {\lambda_{1} \bar{\lambda }_{2} \bar{\theta }} & {\lambda_{1} \bar{\lambda }_{2} \theta } & {} & {} & {} & {} & {} & {} \\ {\bar{\lambda }_{1} \bar{\lambda }_{2} \mu_{1c} } & {\delta_{1c} \bar{\theta }} & {\delta_{1c} \theta } & {\lambda_{1} \bar{\lambda }_{2} \bar{\mu }_{1c} \bar{\theta }} & {\lambda_{1} \bar{\lambda }_{2} \bar{\mu }_{1c} \theta } & {} & {} & {} & {} \\ {\bar{\lambda }_{1} \bar{\lambda }_{2} \mu_{1} } & 0 & {\delta_{1} } & 0 & {\lambda_{1} \bar{\lambda }_{2} \bar{\mu }_{1} } & {} & {} & {} & {} \\ {} & {\bar{\lambda }_{1} \bar{\lambda }_{2} \mu_{1c} \bar{\theta }} & {\bar{\lambda }_{1} \bar{\lambda }_{2} \mu_{1c} \theta } & {\delta_{1c} \bar{\theta }} & {\delta_{1c} \theta } & {\lambda_{1} \bar{\lambda }_{2} \bar{\mu }_{1c} \bar{\theta }} & {\lambda_{1} \bar{\lambda }_{2} \bar{\mu }_{1c} \theta } & {} & {} \\ {} & 0 & {\bar{\lambda }_{1} \bar{\lambda }_{2} \mu_{1} } & 0 & {\delta_{1} } & 0 & {\lambda_{1} \bar{\lambda }_{2} \bar{\mu }_{1} } & {} & {} \\ {} & {} & {} & {} & \ddots & \ddots & \ddots & {} & {} \\ {} & {} & {} & {\bar{\lambda }_{1} \bar{\lambda }_{2} \mu_{1c} \bar{\theta }} & {\bar{\lambda }_{1} \bar{\lambda }_{2} \mu_{1c} \theta } & {\delta_{1c} \bar{\theta }} & {\delta_{1c} \theta } & {\lambda_{1} \bar{\lambda }_{2} \bar{\mu }_{1c} \bar{\theta }} & {\lambda_{1} \bar{\lambda }_{2} \bar{\mu }_{1c} \theta } \\ {} & {} & {} & 0 & {\bar{\lambda }_{1} \bar{\lambda }_{2} \mu_{1} } & 0 & {\delta_{1} } & 0 & {\lambda_{1} \bar{\lambda }_{2} \bar{\mu }_{1} } \\ {} & {} & {} & {} & {} & {\delta_{2c} \bar{\theta }} & {\delta_{2c} \theta } & {\delta_{3c} \bar{\theta }} & {\delta_{3c} \theta } \\ {} & {} & {} & {} & {} & 0 & {\delta_{2} } & 0 & {\delta_{3} } \\ \end{array} } \right],$$
  2. 2.

    The block \({\varvec{P}}_{01}\) is a (2 K + 3) × (4 K + 4) dimensional matrix with its elements given by:

    $${\varvec{P}}_{01} = \left[ {\begin{array}{*{20}c} {\bar{\lambda }_{1} \lambda_{2} \bar{\theta }} & {\bar{\lambda }_{1} \lambda_{2} \theta } & 0 & 0 & {\lambda_{1} \lambda_{2} \bar{\theta }} & {\lambda_{1} \lambda_{2} \theta } & {} & {} & {} & {} & {} & {} & {} & {} & {} & {} \\ {\bar{\lambda }_{1} \lambda_{2} \mu_{1c} \bar{\theta }} & {\bar{\lambda }_{1} \lambda_{2} \mu_{1c} \theta } & 0 & 0 & {\delta_{4c} \bar{\theta }} & {\delta_{4c} \theta } & 0 & 0 & {\lambda_{1} \lambda_{2} \bar{\mu }_{1c} \bar{\theta }} & {\lambda_{1} \lambda_{2} \bar{\mu }_{1c} \theta } & {} & {} & {} & {} & {} & {} \\ 0 & {\bar{\lambda }_{1} \lambda_{2} \mu_{1} } & 0 & 0 & 0 & {\delta_{4} } & 0 & 0 & 0 & {\lambda_{1} \lambda_{2} \bar{\mu }_{1} } & {} & {} & {} & {} & {} & {} \\ {} & {} & {} & {} & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & {} & {} & {} & {} & {} & {} \\ {} & {} & {} & {} & {\bar{\lambda }_{1} \lambda_{2} \mu_{1c} \bar{\theta }} & {\bar{\lambda }_{1} \lambda_{2} \mu_{1c} \theta } & 0 & 0 & {\delta_{4c} \bar{\theta }} & {\delta_{4c} \theta } & 0 & 0 & {\lambda_{1} \lambda_{2} \bar{\mu }_{1c} \bar{\theta }} & {\lambda_{1} \lambda_{2} \bar{\mu }_{1c} \theta } & {} & {} \\ {} & {} & {} & {} & 0 & {\bar{\lambda }_{1} \lambda_{2} \mu_{1} } & 0 & 0 & 0 & {\delta_{4} } & 0 & 0 & 0 & {\lambda_{1} \lambda_{2} \bar{\mu }_{1} } & {} & {} \\ {} & {} & {} & {} & {} & {} & {} & {} & {\bar{\lambda }_{1} \lambda_{2} \mu_{1c} \bar{\theta }} & {\bar{\lambda }_{1} \lambda_{2} \mu_{1c} \theta } & 0 & 0 & {\delta_{4c} \bar{\theta }} & {\delta_{4c} \theta } & {\lambda_{1} \lambda_{2} \bar{\mu }_{1c} \bar{\theta }} & {\lambda_{1} \lambda_{2} \bar{\mu }_{1c} \theta } \\ {} & {} & {} & {} & {} & {} & {} & {} & 0 & {\bar{\lambda }_{1} \lambda_{2} \mu } & 0 & 0 & 0 & {\delta_{4} } & 0 & {\lambda_{1} \lambda_{2} \bar{\mu }_{1} } \\ {} & {} & {} & {} & {} & {} & {} & {} & {} & {} & {} & {} & {\delta_{5c} \bar{\theta }} & {\delta_{5c} \theta } & {\delta_{6c} \bar{\theta }} & {\delta_{6c} \theta } \\ {} & {} & {} & {} & {} & {} & {} & {} & {} & {} & {} & {} & 0 & {\delta_{5} } & 0 & {\delta_{6} } \\ \end{array} } \right],$$
  3. 3.

    The block \({\varvec{P}}_{10}\) is a (4 K + 4) × (2 K + 3) dimensional matrix with its elements given by:

    $${\varvec{P}}_{10} = \left[ {\begin{array}{*{20}c} {\bar{\lambda }_{1} \bar{\lambda }_{2} \mu_{2c} } & {\lambda_{1} \bar{\lambda }_{2} \mu_{2c} \bar{\theta }} & {\lambda_{1} \bar{\lambda }_{2} \mu_{2c} \theta } & {} & {} & {} & {} & {} & {} & {} \\ {\bar{\lambda }_{1} \bar{\lambda }_{2} \mu_{2} } & 0 & {\lambda_{1} \bar{\lambda }_{2} \mu_{2} } & {} & {} & {} & {} & {} & {} & {} \\ {} & {\bar{\lambda }_{1} \bar{\lambda }_{2} \mu_{2c} \bar{\theta }} & {\bar{\lambda }_{1} \bar{\lambda }_{2} \mu_{2c} \theta } & {\lambda_{1} \bar{\lambda }_{2} \mu_{2c} \bar{\theta }} & {\lambda_{1} \bar{\lambda }_{2} \mu_{2c} \theta } & {} & {} & {} & {} & {} \\ {} & 0 & {\bar{\lambda }_{1} \bar{\lambda }_{2} \mu_{2} } & 0 & {\lambda_{1} \bar{\lambda }_{2} \mu_{2} } & {} & {} & {} & {} & {} \\ {} & 0 & 0 & 0 & 0 & {} & {} & {} & {} & {} \\ {} & 0 & 0 & 0 & 0 & {} & {} & {} & {} & {} \\ {} & {} & \ddots & \ddots & \ddots & {} & {} & {} & {} & {} \\ {} & {} & {} & {\bar{\lambda }_{1} \bar{\lambda }_{2} \mu_{2c} \bar{\theta }} & {\bar{\lambda }_{1} \bar{\lambda }_{2} \mu_{2c} \theta } & {\lambda_{1} \bar{\lambda }_{2} \mu_{2c} \bar{\theta }} & {\lambda_{1} \bar{\lambda }_{2} \mu_{2c} \theta } & {} & {} & {} \\ {} & {} & {} & 0 & {\bar{\lambda }_{1} \bar{\lambda }_{2} \mu_{2} } & 0 & {\lambda_{1} \bar{\lambda }_{2} \mu_{2} } & {} & {} & {} \\ {} & {} & {} & 0 & 0 & 0 & 0 & {} & {} & {} \\ {} & {} & {} & 0 & 0 & 0 & 0 & {} & {} & {} \\ {} & {} & {} & {} & {} & {\beta_{1c} \bar{\theta }} & {\beta_{1c} \theta } & 0 & {} & 0 \\ {} & {} & {} & {} & {} & 0 & {\beta_{1} } & 0 & {} & 0 \\ {} & {} & {} & {} & {} & 0 & 0 & 0 & {} & 0 \\ {} & {} & {} & {} & {} & 0 & 0 & 0 & {} & 0 \\ {} & {} & {} & {} & {} & 0 & 0 & 0 & {} & 0 \\ {} & {} & {} & {} & {} & 0 & 0 & 0 & {} & 0 \\ \end{array} } \right],$$
  4. 4.

    The block \({\varvec{P}}_{0}\) is a (4 K + 4) dimensional matrix with its elements given by:

    $${\varvec{P}}_{0} =\left[ {{\begin{array}{*{20}c} {{{\bar{\lambda }}}_{1}}{{{\bar{\lambda }}}_{2}}{{\mu }_{2c}}\bar{\theta } & {{{\bar{\lambda }}}_{1}}{{{\bar{\lambda }}}_{2}}{{\mu }_{2c}}\theta & 0 & 0 & {{\lambda }_{1}}{{{\bar{\lambda }}}_{2}}{{\mu }_{2c}}\bar{\theta } & {{\lambda }_{1}}{{{\bar{\lambda }}}_{2}}{{\mu }_{2c}}\theta & {} & {} & {} & {} & {} & {} & {} & {} & {} & {} & {} \\ 0 & {{{\bar{\lambda }}}_{1}}{{{\bar{\lambda }}}_{2}}{{\mu }_{2}} & 0 & 0 & 0 & {{\lambda }_{1}}{{{\bar{\lambda }}}_{2}}{{\mu }_{2}} & {} & {} & {} & {} & {} & {} & {} & {} & {} & {} & {} \\ {} & {} & {} & {} & {{{\bar{\lambda }}}_{1}}{{{\bar{\lambda }}}_{2}}{{\mu }_{2c}}\bar{\theta } & {{{\bar{\lambda }}}_{1}}{{{\bar{\lambda }}}_{2}}{{\mu }_{2c}}\theta & 0 & 0 & {{\lambda }_{1}}{{{\bar{\lambda }}}_{2}}{{\mu }_{2c}}\bar{\theta } & {{\lambda }_{1}}{{{\bar{\lambda }}}_{2}}{{\mu }_{2c}}\theta & {} & {} & {} & {} & {} & {} & {} \\ {} & {} & {} & {} & 0 & {{{\bar{\lambda }}}_{1}}{{{\bar{\lambda }}}_{2}}{{\mu }_{2}} & 0 & 0 & 0 & {{\lambda }_{1}}{{{\bar{\lambda }}}_{2}}{{\mu }_{2}} & {} & {} & {} & {} & {} & {} & {} \\ {} & {} & {} & {} & 0 & 0 & 0 & 0 & 0 & 0 & {} & {} & {} & {} & {} & {} & {} \\ {} & {} & {} & {} & 0 & 0 & 0 & 0 & 0 & 0 & {} & {} & {} & {} & {} & {} & {} \\ {} & {} & {} & {} & {} & {} & {} & {} & \ddots & \ddots & \ddots & {} & {} & {} & {} & {} & {} \\ {} & {} & {} & {} & {} & {} & {} & {} & {{{\bar{\lambda }}}_{1}}{{{\bar{\lambda }}}_{2}}{{\mu }_{2c}}\bar{\theta } & {{{\bar{\lambda }}}_{1}}{{{\bar{\lambda }}}_{2}}{{\mu }_{2c}}\theta & 0 & 0 & {{\lambda }_{1}}{{{\bar{\lambda }}}_{2}}{{\mu }_{2c}}\bar{\theta } & {{\lambda }_{1}}{{{\bar{\lambda }}}_{2}}{{\mu }_{2c}}\theta & {} & {} & {} \\ {} & {} & {} & {} & {} & {} & {} & {} & 0 & {{{\bar{\lambda }}}_{1}}{{{\bar{\lambda }}}_{2}}{{\mu }_{2}} & 0 & 0 & 0 & {{\lambda }_{1}}{{{\bar{\lambda }}}_{2}}{{\mu }_{2}} & {} & {} & {} \\ {} & {} & {} & {} & {} & {} & {} & {} & 0 & 0 & 0 & 0 & 0 & 0 & {} & {} & {} \\ {} & {} & {} & {} & {} & {} & {} & {} & 0 & 0 & 0 & 0 & 0 & 0 & {} & {} & {} \\ {} & {} & {} & {} & {} & {} & {} & {} & {} & {} & {} & {} & {{\beta }_{1c}}\bar{\theta } & {{\beta }_{1c}}\theta & 0 & {} & 0 \\ {} & {} & {} & {} & {} & {} & {} & {} & {} & {} & {} & {} & 0 & {{\beta }_{1}} & 0 & {} & 0 \\ {} & {} & {} & {} & {} & {} & {} & {} & {} & {} & {} & {} & 0 & 0 & 0 & {} & 0 \\ {} & {} & {} & {} & {} & {} & {} & {} & {} & {} & {} & {} & 0 & 0 & 0 & {} & 0 \\ {} & {} & {} & {} & {} & {} & {} & {} & {} & {} & {} & {} & 0 & 0 & 0 & {} & 0 \\ {} & {} & {} & {} & {} & {} & {} & {} & {} & {} & {} & {} & 0 & 0 & 0 & {} & 0 \\ \end{array} }} \right],$$
  5. 5.

    The block \({\varvec{P}}_{1}\) is a (4 K + 4) dimensional matrix with its elements given by:

    $${\varvec{P}}_{1} = \left[ {\begin{array}{*{20}c} {\beta_{2c} \bar{\theta }} & {\beta_{2c} \theta } & {\lambda_{1} \bar{\lambda }_{2} \bar{\mu }_{2c} \bar{\theta }} & {\lambda_{1} \bar{\lambda }_{2} \bar{\mu }_{2c} \theta } & {\lambda_{1} \lambda_{2} \mu_{2c} \bar{\theta }} & {\lambda_{1} \lambda_{2} \mu_{2c} \theta } & {} & {} & {} & {} & {} & {} & {} & {} \\ 0 & {\beta_{2} } & 0 & {\lambda_{1} \bar{\lambda }_{2} \bar{\mu }_{2} } & 0 & {\lambda_{1} \lambda_{2} \mu_{2} } & {} & {} & {} & {} & {} & {} & {} & {} \\ 0 & 0 & {\bar{\lambda }_{1} \bar{\lambda }_{2} \bar{\mu }_{2c} \bar{\theta }} & {\bar{\lambda }_{1} \bar{\lambda }_{2} \bar{\mu }_{2c} \theta } & {\bar{\lambda }_{1} \lambda_{2} \mu_{2c} \bar{\theta }} & {\bar{\lambda }_{1} \lambda_{2} \mu_{2c} \theta } & {\lambda_{1} \bar{\lambda }_{2} \bar{\mu }_{2c} \bar{\theta }} & {\lambda_{1} \bar{\lambda }_{2} \bar{\mu }_{2c} \theta } & {\lambda_{1} \lambda_{2} \mu_{2c} \bar{\theta }} & {\lambda_{1} \lambda_{2} \mu_{2c} \theta } & {} & {} & {} & {} \\ 0 & 0 & 0 & {\bar{\lambda }_{1} \bar{\lambda }_{2} \bar{\mu }_{2} } & 0 & {\bar{\lambda }_{1} \lambda_{2} \mu_{2} } & 0 & {\lambda_{1} \bar{\lambda }_{2} \bar{\mu }_{2} } & 0 & {\lambda_{1} \lambda_{2} \mu_{2} } & {} & {} & {} & {} \\ {\bar{\lambda }_{1} \bar{\lambda }_{2} \mu_{1c} \bar{\theta }} & {\bar{\lambda }_{1} \bar{\lambda }_{2} \mu_{1c} \theta } & 0 & 0 & {\delta_{1c} \bar{\theta }} & {\delta_{1c} \theta } & 0 & 0 & {\lambda_{1} \bar{\lambda }_{2} \bar{\mu }_{1c} \bar{\theta }} & {\lambda_{1} \bar{\lambda }_{2} \bar{\mu }_{1c} \theta } & {} & {} & {} & {} \\ 0 & {\bar{\lambda }_{1} \bar{\lambda }_{2} \mu_{1} } & 0 & 0 & 0 & {\delta_{1} } & 0 & 0 & 0 & {\lambda_{1} \bar{\lambda }_{2} \bar{\mu }_{1} } & {} & {} & {} & {} \\ {} & {} & \ddots & {} & \ddots & {} & \ddots & {} & \ddots & {} & {} & {} & {} & {} \\ {} & {} & 0 & 0 & {\bar{\lambda }_{1} \bar{\lambda }_{2} \bar{\mu }_{2c} \bar{\theta }} & {\bar{\lambda }_{1} \bar{\lambda }_{2} \bar{\mu }_{2c} \theta } & {\bar{\lambda }_{1} \lambda_{2} \mu_{2c} \bar{\theta }} & {\bar{\lambda }_{1} \lambda_{2} \mu_{2c} \theta } & {\lambda_{1} \bar{\lambda }_{2} \bar{\mu }_{2c} \bar{\theta }} & {\lambda_{1} \bar{\lambda }_{2} \bar{\mu }_{2c} \theta } & {\lambda_{1} \lambda_{2} \mu_{2c} \bar{\theta }} & {\lambda_{1} \lambda_{2} \mu_{2c} \theta } & {} & {} \\ {} & {} & 0 & 0 & 0 & {\bar{\lambda }_{1} \bar{\lambda }_{2} \bar{\mu }_{2} } & 0 & {\bar{\lambda }_{1} \lambda_{2} \mu_{2} } & 0 & {\lambda_{1} \bar{\lambda }_{2} \bar{\mu }_{2} } & 0 & {\lambda_{1} \lambda_{2} \mu_{2} } & {} & {} \\ {} & {} & {\bar{\lambda }_{1} \bar{\lambda }_{2} \mu_{1c} \bar{\theta }} & {\bar{\lambda }_{1} \bar{\lambda }_{2} \mu_{1c} \theta } & 0 & 0 & {\delta_{1c} \bar{\theta }} & {\delta_{1c} \theta } & 0 & 0 & {\lambda_{1} \bar{\lambda }_{2} \bar{\mu }_{1c} \bar{\theta }} & {\lambda_{1} \bar{\lambda }_{2} \bar{\mu }_{1c} \theta } & {} & {} \\ {} & {} & 0 & {\bar{\lambda }_{1} \bar{\lambda }_{2} \mu_{1} } & 0 & 0 & 0 & {\delta_{1} } & 0 & 0 & 0 & {\lambda_{1} \bar{\lambda }_{2} \bar{\mu }_{1} } & {} & {} \\ {} & {} & {} & {} & {} & {} & 0 & 0 & {\beta_{3c} \bar{\theta }} & {\beta_{3c} \theta } & {\beta_{4c} \bar{\theta }} & {\beta_{4c} \theta } & 0 & 0 \\ {} & {} & {} & {} & {} & {} & 0 & 0 & 0 & {\beta_{3} } & 0 & {\beta_{4} } & 0 & 0 \\ {} & {} & {} & {} & {} & {} & {\bar{\lambda }_{1} \bar{\lambda }_{2} \mu_{1c} \bar{\theta }} & {\bar{\lambda }_{1} \bar{\lambda }_{2} \mu_{1c} \theta } & 0 & 0 & {\delta_{1c} \bar{\theta }} & {\delta_{1c} \theta } & {\lambda_{1} \bar{\lambda }_{2} \bar{\mu }_{1c} \bar{\theta }} & {\lambda_{1} \bar{\lambda }_{2} \bar{\mu }_{1c} \theta } \\ {} & {} & {} & {} & {} & {} & 0 & {\bar{\lambda }_{1} \bar{\lambda }_{2} \mu_{1} } & 0 & 0 & 0 & {\delta_{1} } & 0 & {\lambda_{1} \bar{\lambda }_{2} \bar{\mu }_{1} } \\ {} & {} & {} & {} & {} & {} & {} & {} & {} & {} & {\delta_{2c} \bar{\theta }} & {\delta_{2c} \theta } & {\delta_{3c} \bar{\theta }} & {\delta_{3c} \theta } \\ {} & {} & {} & {} & {} & {} & {} & {} & {} & {} & 0 & {\delta_{2} } & 0 & {\delta_{3} } \\ \end{array} } \right],$$
  6. 6.

    The block \({\varvec{P}}_{2}\) is a (4 K + 4) dimensional matrix with its elements given by:

    $${\varvec{P}}_{2} = \left[ {\begin{array}{*{20}c} {\bar{\lambda }_{1} \lambda_{2} \bar{\mu }_{2c} \bar{\theta }} & {\bar{\lambda }_{1} \lambda_{2} \bar{\mu }_{2c} \theta } & {\lambda_{1} \lambda_{2} \bar{\mu }_{2c} \bar{\theta }} & {\lambda_{1} \lambda_{2} \bar{\mu }_{2c} \theta } & {} & {} & {} & {} & {} & {} & {} & {} & {} & {} \\ 0 & {\bar{\lambda }_{1} \lambda_{2} \bar{\mu }_{2} } & 0 & {\lambda_{1} \lambda_{2} \bar{\mu }_{2} } & {} & {} & {} & {} & {} & {} & {} & {} & {} & {} \\ 0 & 0 & {\bar{\lambda }_{1} \lambda_{2} \bar{\mu }_{2c} \bar{\theta }} & {\bar{\lambda }_{1} \lambda_{2} \bar{\mu }_{2c} \theta } & 0 & 0 & {\lambda_{1} \lambda_{2} \bar{\mu }_{2c} \bar{\theta }} & {\lambda_{1} \lambda_{2} \bar{\mu }_{2c} \theta } & {} & {} & {} & {} & {} & {} \\ 0 & 0 & 0 & {\bar{\lambda }_{1} \lambda_{2} \bar{\mu }_{2} } & 0 & 0 & 0 & {\lambda_{1} \lambda_{2} \bar{\mu }_{2} } & {} & {} & {} & {} & {} & {} \\ {\bar{\lambda }_{1} \lambda_{2} \mu_{1c} \bar{\theta }} & {\bar{\lambda }_{1} \lambda_{2} \mu_{1c} \theta } & 0 & 0 & {\delta_{4c} \bar{\theta }} & {\delta_{4c} \theta } & 0 & 0 & {\lambda_{1} \lambda_{2} \bar{\mu }_{1c} \bar{\theta }} & {\lambda_{1} \lambda_{2} \bar{\mu }_{1c} \theta } & {} & {} & {} & {} \\ 0 & {\bar{\lambda }_{1} \lambda_{2} \mu_{1} } & 0 & 0 & 0 & {\delta_{4} } & 0 & 0 & 0 & {\lambda_{1} \lambda_{2} \bar{\mu }_{1} } & {} & {} & {} & {} \\ {} & {} & \ddots & {} & \ddots & {} & \ddots & {} & \ddots & {} & {} & {} & {} & {} \\ {} & {} & 0 & 0 & {\bar{\lambda }_{1} \lambda_{2} \bar{\mu }_{2c} \bar{\theta }} & {\bar{\lambda }_{1} \lambda_{2} \bar{\mu }_{2c} \theta } & 0 & 0 & {\lambda_{1} \lambda_{2} \bar{\mu }_{2c} \bar{\theta }} & {\lambda_{1} \lambda_{2} \bar{\mu }_{2c} \theta } & {} & {} & {} & {} \\ {} & {} & 0 & 0 & 0 & {\bar{\lambda }_{1} \lambda_{2} \bar{\mu }_{2} } & 0 & 0 & 0 & {\lambda_{1} \lambda_{2} \bar{\mu }_{2} } & 0 & {} & {} & {} \\ {} & {} & {\bar{\lambda }_{1} \lambda_{2} \mu_{1c} \bar{\theta }} & {\bar{\lambda }_{1} \lambda_{2} \mu_{1c} \theta } & 0 & 0 & {\delta_{4c} \bar{\theta }} & {\delta_{4c} \theta } & 0 & 0 & {\lambda_{1} \lambda_{2} \bar{\mu }_{1c} \bar{\theta }} & {\lambda_{1} \lambda_{2} \bar{\mu }_{1c} \theta } & {} & {} \\ {} & {} & 0 & {\bar{\lambda }_{1} \lambda_{2} \mu_{1} } & 0 & 0 & 0 & {\delta_{4} } & 0 & 0 & 0 & {\lambda_{1} \lambda_{2} \bar{\mu }_{1} } & {} & {} \\ {} & {} & {} & {} & {} & {} & 0 & 0 & {\beta_{5c} \bar{\theta }} & {\beta_{5c} \theta } & 0 & 0 & 0 & 0 \\ {} & {} & {} & {} & {} & {} & 0 & 0 & 0 & {\beta_{5} } & 0 & 0 & 0 & 0 \\ {} & {} & {} & {} & {} & {} & {\bar{\lambda }_{1} \lambda_{2} \mu_{1c} \bar{\theta }} & {\bar{\lambda }_{1} \lambda_{2} \mu_{1c} \theta } & 0 & 0 & {\delta_{4c} \bar{\theta }} & {\delta_{4c} \theta } & {\lambda_{1} \lambda_{2} \bar{\mu }_{1c} \bar{\theta }} & {\lambda_{1} \lambda_{2} \bar{\mu }_{1c} \theta } \\ {} & {} & {} & {} & {} & {} & 0 & {\bar{\lambda }_{1} \lambda_{2} \mu_{1} } & 0 & 0 & 0 & {\delta_{4} } & 0 & {\lambda_{1} \lambda_{2} \bar{\mu }_{1} } \\ {} & {} & {} & {} & {} & {} & {} & {} & {} & {} & {\delta_{5c} \bar{\theta }} & {\delta_{5c} \theta } & {\delta_{6c} \bar{\theta }} & {\delta_{6c} \theta } \\ {} & {} & {} & {} & {} & {} & {} & {} & {} & {} & 0 & {\delta_{5} } & 0 & {\delta_{6} } \\ \end{array} } \right].$$

    .

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Ma, Z., Cao, J. et al. Analysis of Half-Asleep and Wakeup Strategy in Wireless Mesh/Relay Networks with Double-State Channel. Int J Wireless Inf Networks 25, 173–185 (2018). https://doi.org/10.1007/s10776-018-0390-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10776-018-0390-7

Keywords

Navigation