Skip to main content
Log in

Security Analysis and Improvements on a Semi-Quantum Electronic Voting Protocol

  • RESEARCH
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Recently, Qiu et al. proposed a semi-quantum voting scheme based on the ring signature (International Journal of Theoretical Physics, 60: 1550–1555(2021)), in which the signer and verifier only need to measure the received particles with Z-basis and perform some classical simple encryption/decryption operations on the classical message. Although their scheme is very efficient, it cannot resist the eavesdropping attacks and forgery attack. In this paper, first, the eavesdropping attacks on Qiu et al.’s scheme are proposed. Second, we show the forgery attack on their scheme. Then, based on the GHZ state, an improved semi-quantum electronic voting protocol is proposed. In the new protocol, the eavesdropping check technology not only can be used to detect the eavesdropping, but also can be used to share a random number. By using the random number and the shared key, the signed vote is encrypted so that it is infeasible for the adversary to trace the signer’s identity and forge a valid signed vote. The new protocol overcomes all the security drawbacks of the old protocol. What is more, it has better practicability and efficiency than the similar semi-quantum voting protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

    Article  MathSciNet  Google Scholar 

  2. Huang, Y., Su, Z., Zhang, F., et al.: Quantum algorithm for solving hyper elliptic curve discrete logarithm problem. Quantum Inf. Process. 19, 62 (2020)

    Article  ADS  Google Scholar 

  3. Sutradhar, K., Om, H.: Efficient quantum secret sharing without a trusted player. Quantum Inf. Process. 19(2), 73 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  4. Sutradhar, K., Om, H.: Secret sharing based multiparty quantum computation for multiplication. Int. J. Theor. Phys. 60(9), 3417–3425 (2021)

    Article  MathSciNet  Google Scholar 

  5. Sutradhar, K., Om, H.: Enhanced (t, n) threshold d-level quantum secret sharing. Sci. Rep. 11(1), 17083 (2021)

    Article  ADS  Google Scholar 

  6. Sutradhar, K., Om, H.: A generalized quantum protocol for secure multiparty summation. IEEE Trans. Circ. Syst. II Express Briefs. 67(12), 2978–2982 (2020)

    Google Scholar 

  7. Sutradhar, K., Om, H.: Hybrid quantum protocols for secure multiparty summation and multiplication. Sci. Rep. 10(1), 9097 (2020)

    Article  ADS  Google Scholar 

  8. Sutradhar, K., Om, H.: An efficient simulation for quantum secure multiparty computation. Sci. Rep. 11(1), 2206 (2021)

    Article  ADS  Google Scholar 

  9. Sutradhar, K., Om, H.: A cost-effective quantum protocol for secure multi-party multiplication. Quantum Inf. Process. 20(11), 380 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  10. Sutradhar, K.: Secure multiparty quantum aggregating protocol. Quantum Inf. Comput. 23(3&4), 245–256 (2023)

    MathSciNet  Google Scholar 

  11. Venkatesh, R., Savadatti Hanumantha, B.: Electronic medical records protection framework based on quantum blockchain for multiple hospitals. Multimed Tools Appl. 1–14 (2023). https://doi.org/10.1007/s11042-023-16848-y

  12. Venkatesh, R., Hanumantha, B.S.: A privacy-preserving quantum blockchain technique for electronic medical records. IEEE Eng. Manag. 51(4), 137–144 (2023)

    Google Scholar 

  13. Sutradhar, K.: A quantum cryptographic protocol for secure vehicular communication. IEEE Trans. Intell. Transp. Syst. 1–10 (2023). https://doi.org/10.1109/TITS.2023.3322728

  14. Christandl, M., Wehner, S.: Quantum anonymous transmissions. Roy B. (eds) Advances in Cryptology-ASIACRYPT 2005 3788, 217–235 (2005)

  15. Vaccaro, J.A., Spring, J., Chefles, A.: Quantum protocols for anonymous voting and surveying. Phys. Rev. A 75(1), 012333 (2005)

    Article  ADS  Google Scholar 

  16. Hillery, M., et al.: Towards quantum-based privacy and voting. Phys. Lett. A 349(1–4), 75–81 (2006)

    Article  ADS  Google Scholar 

  17. Hillery, M.: Quantum voting and privacy protection: first steps. Int. Soc. Opt Eng. (2006). https://doi.org/10.1117/2.1200610.0419

  18. Li, Y., Zeng, G.H.: Quantum anonymous voting systems based on entangled state. Opt. Rev. 15(5), 219–223 (2008)

    Article  Google Scholar 

  19. Horoshko, D., Kilin, S.: Quantum anonymous voting with anonymity check. Phys. Lett. A 375(8), 1172–1175 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  20. Jiang, L., He, G.Q., Nie, D., Xiong, J., Zeng, G.H.: Quantum anonymous voting for continuous variables. Phys. Rev. A 85(4), 042309 (2012)

    Article  ADS  Google Scholar 

  21. Wang, Y.W., Wei, X.H., Zhu, Z.H.: Quantum voting protocols based on the non-symmetric quantum channel with controlled quantum operation teleportation (in Chinese). Acta Phys. Sin. 62(16), 160302 (2013)

    Article  Google Scholar 

  22. Tian, J.H., Zhang, J.Z., Li, Y.P.: A voting protocol based on the controlled quantum operation teleportation. Int. J. Theor. Phys. 55(5), 2303–2310 (2016)

    Article  MathSciNet  Google Scholar 

  23. Thapliyal, K., Sharma, R.D., Pathak, A.: Analysis and improvement of Tian-Zhang-Li voting protocol based on controlled quantum teleportation. arXiv:1602.00791 [quant-ph] (2016)

  24. Wang, Q.L., et al.: Self-tallying quantum anonymous voting. Phys. Rev. A 94(2), 022333 (2016)

    Article  ADS  Google Scholar 

  25. Qin, J.Q., Shi, R.H., Zhang, R.: Quantum voting protocol based on controlled quantum secure direct communication(in Chinese). Chinese J. Quantum Electron. 35(5), 558–566 (2018)

    Google Scholar 

  26. Li, Y.P., Zhou, F., Wang, T., et al.: Novel quantum voting protocol with eight-qubit cluster entangled state. Int. J. Theor. Phys. 59, 2671–2680 (2020)

    Article  MathSciNet  Google Scholar 

  27. Jiang, D.H., Wang, J., Liang, X.Q., et al.: Quantum voting scheme based on locally indistinguishable orthogonal product states. Int. J. Theor. Phys. 59(2), 436–444 (2020)

    Article  MathSciNet  Google Scholar 

  28. Liu, B.X., Jiang, D.H., Liang, X.Q., et al.: A novel quantum voting scheme based on BB84-state. Int. J. Theor. Phys. 60(4), 1339–1349 (2021)

    Article  MathSciNet  Google Scholar 

  29. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Theor. Comput. Sci. 560, 7–11 (2014)

    Article  MathSciNet  Google Scholar 

  30. Li, Y.R., Jiang, D.H., Zhang, Y.H., et al.: A quantum voting protocol using single-particle states. Quantum Inf. Process. 20, 110 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  31. Xiong, Z.H., Yin, A.H.: Single particle electronic voting scheme based on quantum ring signature. Mod. Phys. Lett. A 37(26), 2250174 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  32. Boyer, M., Kenigsberg, D., Mor, T.: Quantum key distribution with classical Bob. Phys. Rev. Lett. 99(14), 140501 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  33. Xu, Y.P., Gao, D.Z., Liang, X.Q., et al.: Semi-quantum voting protocol. Int. J. Theor. Phys. 61(3), 78 (2022)

    Article  MathSciNet  Google Scholar 

  34. Qiu, C., Zhang, S.B., Chang, Y., et al.: Electronic voting scheme based on a quantum ring signature. Int. J. Theor. Phys. 60(4), 1550–1555 (2021)

    Article  MathSciNet  Google Scholar 

  35. Cai, Q.Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. A 351(1–2), 23–25 (2006)

    Article  ADS  Google Scholar 

  36. Gisin, N., Ribordy, G.G., Tittel, W., et al.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145–195 (2002)

    Article  ADS  Google Scholar 

  37. Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72(4), 044302 (2005)

    Article  ADS  Google Scholar 

  38. Li, X.H., Deng, F.G., Zhou, H.Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A 74(5), 054302 (2006)

    Article  ADS  Google Scholar 

  39. Yang, C.W., Hwang, T., Luo, Y.P.: Enhancement on “Quantum blind signature based on two-state vector formalism.” Quantum Inf. Process. 12(1), 109–117 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  40. Hwang, T., Lee, K.C.: EPR quantum key distribution protocols with 100% qubit efficiency. IET Inf. Secur. 1(1), 43–45 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No.62272090) and the Key Scientific Research Project of Colleges and Universities in Henan Province (Grant No.22A413010).

Funding

This work was funded by Key Scientific Research Project of Colleges and Universities in Henan Province, 22A413010, National Natural Science Foundation of China, 62272090.

Author information

Authors and Affiliations

Authors

Contributions

The correctness and security analyzed were presented by Xin Xiangjun and Qiu Shujing, and the manuscript was written by Xin Xiangjun and Qiu Shujing as well. The manuscript was reviewed by Zheng qian, Li Chaoyang and Li Fagen. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xin Xiangjun.

Ethics declarations

Competing Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shujing, Q., Xiangjun, X., qian, Z. et al. Security Analysis and Improvements on a Semi-Quantum Electronic Voting Protocol. Int J Theor Phys 63, 79 (2024). https://doi.org/10.1007/s10773-024-05618-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-024-05618-7

Keywords

Navigation