Skip to main content
Log in

Dissipative Time Evolution of Entanglement in the Tetrahedral Structure of Spins \(s = \frac{1}{2}\) - a Numerical Analysis

  • Research
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The paper covers the analysis conducted to determine the effect, in terms of entanglement concurrence, of supplementing the tetrahedral spin \(s = \frac{1}{2}\) structure with additional central spin. The investigation is conducted with assumption that the system is coupled with the environment of Markovian nature. This work contains a comparison between three stuctures (unsupplemented, supplemented with spin \(s = \frac{1}{2}\) and supplemented with spin \(S = 1\)), with various exchange interaction parameters, taking into account also Dzyaloshinskii - Moriya (DM) and Kaplan - Shekhtman - Entin-Wohlman - Aharony (KSEA) interactions. The investigation reveals that by manipulating the anisotropy of the exchange interactions and DM coefficient, the effect of higher initial entanglement in supplemented structures can be obtained for particular initial states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

Generated data are available from the corresponding author on request.

References

  1. Einstein, A., Rosen, N., Podolsky, B.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935)

    ADS  Google Scholar 

  2. Schrödinger, E.: Die gegenwärtige situation in der Quantenmechanik. Naturwissenschaft 23, 807–812 (1935)

    ADS  Google Scholar 

  3. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    ADS  MathSciNet  Google Scholar 

  4. Kempe, J.: Multiparticle entanglement and its applications to cryptography. Phys. Rev. A 60, 910–916 (1999)

    ADS  MathSciNet  Google Scholar 

  5. Jennewein, T., Simon, Ch., Weihs, G., Weinfurter, H., Zeilinger, A.: Quantum cryptography with entangled photons. Phys. Rev. Lett. 84, 4729–4732 (2000)

    ADS  Google Scholar 

  6. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)

    ADS  Google Scholar 

  7. Barenco, A., Deutsch, D., Ekert, A., Jozsa, R.: Conditional quantum dynamics and logic gates. Phys. Rev. Lett. 74, 4083 (1995)

    ADS  Google Scholar 

  8. Galindo, A., Mart‘ın-Delgado, M.A.: Information and computation: Classical and quantum aspects. Rev. Mod. Phys. 74, 347–423 (2002)

    ADS  MathSciNet  Google Scholar 

  9. Wu, Y., Payne, M.G., Hagley, E.W., Deng, L.: Preparation of multiparty entangled states using pairwise perfectly efficient single-probe photon four-wave mixing. Phys. Rev. A 69, 063803 (2004)

    ADS  Google Scholar 

  10. Kendon, V.M., Munro, W.J.: Entanglement and its role in Shor’s algorithm. Quantum Inf. Comput. 6, 630–640 (2006)

    MathSciNet  Google Scholar 

  11. Mattle, K., Weinfurter, H., Kwiat, P.G., Zeilinger, A.: Dense coding in experimental quantum communication. Phys. Rev. Lett. 76, 4656 (1996)

    ADS  Google Scholar 

  12. Harrow, A., Hayden, P., Leung, D.: Superdense coding of quantum states. Phys. Rev. Lett. 92, 187901 (2004)

    ADS  Google Scholar 

  13. Agrawal, P., Pati, A.: Perfect teleportation and superdense coding with \(W\) states. Phys. Rev. A 74, 062320 (2006)

    ADS  Google Scholar 

  14. Bouwmeester, D., Pan, J.-W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575–579 (1997)

    ADS  Google Scholar 

  15. Pirandola, S., Eisert, J., Weedbrok, C., Furusawa, A., Braunstein, S.L.: Advances in quantum teleportation. Nature Photonics 9, 641–652 (2015)

    ADS  Google Scholar 

  16. Giovanetti, V., Lloyd, S., Maccone, L.: Quantum-enhanced measurements: Beating the standard quantum limit. Science 306, 1330–1336 (2004)

    ADS  Google Scholar 

  17. Wang, K., Wang, X., Zhan, X., Bian, Z., Li, J., Sanders, B.C., Xue, P.: Entanglement-enhanced quantum metrology in a noisy environment. Phys. Rev. A 97, 042112 (2018)

    ADS  Google Scholar 

  18. Del Cima, O.M., Franco, D.H.T., da Silva, S.L.L.: Quantum entanglement in trimer spin-1/2 Heisenberg chains with antiferromagnetic coupling. Quantum Stud.: Math Found. 3, 57–63 (2016)

    Google Scholar 

  19. Mahmoudi, M., Mahdavifar, S., Zadeh, T.M.A., Soltani, M.R.: Non-Markovian dynamics in the extended cluster spin-1/2 XX chain. Phys. Rev. A 95, 012336 (2017)

    ADS  Google Scholar 

  20. Najarbashi, G., Balazadeh, L., Tavana, A.: Thermal entanglement in XXZ Heisenberg model for coupled spin-half and spin-one triangular cell. Int. J. Theor. Phys. 57, 95–111 (2018)

    Google Scholar 

  21. Lima, L.S.: Thermal entanglement in the quantum XXZ model in triangular and bilayer honeycomb lattices. J. Low Temp. Phys. 198, 241–251 (2020)

    ADS  Google Scholar 

  22. Li, L.-J., Ming, F., Shi, W.-N., Ye, L., Wang, D.: Measurement uncertainty and entanglement in the hybrid-spin Heisenberg model. Physica E 133, 114802 (2021)

    Google Scholar 

  23. Tchoffo, M., Tene, A.G.: Entanglement dynamics of a two-qubit XYZ spin chain under both Dzyaloshinskii-Moriya interaction and time-dependent anisotropic magnetic field. Int. J. Theor. Phys. 59, 2232–2248 (2020)

    MathSciNet  Google Scholar 

  24. Mohamed, A.B.A., Abdel-Aty, A.H., El-Hadidy, E.G., El-Saka, H.A.A.: Two-qubit Heisenberg XYZ dynamics of local quantum Fisher information, skew information coherence: Dzyaloshinskii-Moriya interaction and decoherence. Results Phys. 30, 104777 (2021)

    Google Scholar 

  25. Lima, L.S.: Effect of Dzyaloshinskii-Moriya interaction on quantum entanglement in superconductors models of high TC. Eur. Phys. J. D 73, 6 (2019)

    ADS  Google Scholar 

  26. Huang, L.-Y.: Thermal entanglement in a Ising spin chain with Dzyaloshinski-Moriya anisotropic antisymmetric interaction in a nonuniform magnetic field. Int. J. Theor. Phys. 60, 4023–4029 (2021)

    MathSciNet  Google Scholar 

  27. Khedif, Y., Errehymy, A., Daoud, M.: On the thermal nonclassical correlations in a two-spin XYZ Heisenberg model with Dzyaloshinskii-Moriya interaction. Eur. Phys. J. Plus 136, 336 (2021)

    Google Scholar 

  28. Fedorova, A.V., Yurischev, M.A.: Quantum entanglement in the anisotropic Heisenberg model with multicomponent DM and KSEA interactions. Quantum Inf. Process. 20, 196 (2021)

    MathSciNet  Google Scholar 

  29. Hashem, M., Mohamed, A.-B.A., Haddadi, S., Khedif, Y., Pourkarimi, M.R., Daoud, M.: Bell nonlocality, entanglement, and entropic uncertainty in a Heisenberg model under intrinsic decoherence: DM and KSEA interplay effects. Appl. Phys. B 128, 87 (2022)

    ADS  Google Scholar 

  30. Elghaayda, S., Khedr, A.N., Tammam, M., Mansour, M., Abdel-Aty, M.: Quantum entanglement versus skew information correlations in dipole-dipole system under KSEA and DM interactions. Quant. Inf. Process. 22, 117 (2023)

    ADS  MathSciNet  Google Scholar 

  31. Milivojević, M.: Maximal thermal entanglement using three-spin interactions. Quantum Inf. Process. 18, 48 (2019)

    ADS  MathSciNet  Google Scholar 

  32. Mahmoudi, M.: The effects of Dzyaloshinskii-Moriya interaction on entanglement dynamics of a spin chain in a non-Markovian regime. Physica A 545, 123707 (2020)

    Google Scholar 

  33. Zhou, F., Tian, Y., Song, Y., Qiu, Ch., Wang, X., Zhou, M., Chen, B., Xu, N., Lu, D.: Preserving entanglement in a solid-spin system using quantum autoencoders. Appl. Phys. Lett. 121, 134001 (2022)

    ADS  Google Scholar 

  34. Rule, K.C., Reehuis, M., Gibson, M.C.R., Ouladdiaf, B., Gutmann, M.J., Hoffmann, J.-U., Gerischer, S., Tennant, D.A., Süllow, S., Lang, M.: Magnetic and crystal structure of azurite Cu\({}_{3}\)(CO\({}_{3}\))\({}_{2}\)(OH)\({}_{2}\) as determined by neutron diffraction. Phys. Rev. B 83, 104401 (2011)

    ADS  Google Scholar 

  35. Mühlbauer, S., Gvasaliya, S., Ressouche, E., Pomjakushina, E., Zheludev, A.: Phase diagram of the Dzyaloshinskii-Moriya helimagnet Ba\({}_{2}\)CuGe\({}_{2}\)O\({}_{7}\) in canted magnetic fields. Phys. Rev. B 86, 024417 (2012)

    ADS  Google Scholar 

  36. Benito, M., Schuetz, M.J.A., Cirac, J.I., Platero, G., Giedke, G.: Dissipative long-range entanglement generation between electronic spins. Phys. Rev. B 94, 115404 (2016)

    ADS  Google Scholar 

  37. Sadiek, G., Almalki, S.: Thermal robustness of entanglement in a dissipative two-dimensional spin system in an inhomogeneous magnetic field. Entropy 23, 1066 (2021)

    ADS  MathSciNet  Google Scholar 

  38. Dzyaloshinsky, I.: A thermodynamic theory of “weak’’ ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 4, 241–255 (1958)

    ADS  Google Scholar 

  39. Moriya, T.: New mechanism of anisotropic superexchange interaction. Phys. Rev. Lett. 5, 228–230 (1960)

    ADS  Google Scholar 

  40. Kaplan, T.A.: Single-band Hubbard model with spin-orbit coupling. Z. Phys. B 49, 313–317 (1983)

    ADS  Google Scholar 

  41. Shetkhman, L., Entin-Wohlman, O., Aharony, A.: Moriya’s anisotropic superexchange interaction, frustration, and Dzyaloshinsky’s weak ferromagnetism. Phys. Rev. Lett. 69, 836 (1992)

    ADS  Google Scholar 

  42. Hill, S.A., Wooters, W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022 (1997)

    ADS  Google Scholar 

  43. Wooters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    ADS  Google Scholar 

  44. Kaczor, M., Jakubczyk, P.: Numerical analysis of bipartite entanglement evolution in simple cubic 1/2-spin system with additional spin 1 dopant. Quant. Inf. Process. 22, 168 (2023)

    ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

M.K. formulated the idea, proposed the model, conducted the theoretical and numerical analysis and wrote the original draft; A.S. prepared the visualization of obtained data and supervised the numerical methods; both author reviewed the manuscript and discussed the results.

Corresponding author

Correspondence to Michał Kaczor.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaczor, M., Stasik, A. Dissipative Time Evolution of Entanglement in the Tetrahedral Structure of Spins \(s = \frac{1}{2}\) - a Numerical Analysis. Int J Theor Phys 63, 63 (2024). https://doi.org/10.1007/s10773-024-05606-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-024-05606-x

Keywords

Navigation