Skip to main content
Log in

Entanglement and Uncertainty in the Special-Relativistic Regime

  • Research
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

This paper seeks an interplay between entanglement and uncertainty in the special-relativistic regime. A pure quantum state describing the system of identical target particles in a special relativity scenario is adopted to be correlated if, for a pair of position and momentum observables, the quantum covariance functions do not vanish. We explore how the relativistic uncertainty principle (RUP) is modified in the presence of quantum entanglement within the bipartite and multipartite systems. In addition, the separability criteria established upon the total variance of a pair of Einstein-Podolski-Rosen type operators are derived. These criteria making use of RUP specify necessary and sufficient conditions for factorizing the two-mode and multi-mode continuous-variable states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Throughout the paper we adopt units in which \(\hbar =1\).

References

  1. Amelino-Camelia, G. Astuti, V.: arXiv:2209.04350

  2. Marolf, D., Rovelli, C.: Phys. Rev. D 66, 023510 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  3. Schrödinger, E.: Math. Proc. Camb. Phil. Soc. 31, 555 (1935)

    Article  ADS  Google Scholar 

  4. Einstein, A., Podolsky, B., Rosen, R.: Phys. Rev. 47, 777 (1935)

    Article  ADS  Google Scholar 

  5. Bell, J.S.: Physics 1, 195 (1964)

    Article  Google Scholar 

  6. Duan, L.-M., Giedke, G., Cirac, J.I., Zoller, P.: Phys. Rev. Lett. 84, 2722 (2000)

    Article  ADS  Google Scholar 

  7. Weedbrook, C., et al.: Rev. Mod. Phys. 84, 621 (2012)

    Article  ADS  Google Scholar 

  8. Lami, L., Serafini, A., Adesso, G.: New J. Phys. 20, 023030 (2018)

    Article  ADS  Google Scholar 

  9. Shchukin, E., Vogel, W.: Phys. Rev. A 74, 030302(R) (2006)

    Article  ADS  MathSciNet  Google Scholar 

  10. Bennett, C.H., et al.: Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  11. Scarani, V., Iblisdir, S., Gisin, N., Acin, A.: Rev. Mod. Phys. 77, 1225 (2005)

    Article  ADS  Google Scholar 

  12. Ekert, A.K.: Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  13. Wang, K., et al.: Phys. Rev. A 97, 042112 (2018)

    Article  ADS  Google Scholar 

  14. Vidal, G.: Phys. Rev. Lett. 91, 147902 (2003)

    Article  ADS  Google Scholar 

  15. Zeng, B., Chen, X., Zhou, D.-L., Wen, X.-G.: Quantum Information Meets Quantum Matter. Springer, New York (2019)

    Book  Google Scholar 

  16. Rigolin, G.: Commun. Theor. Phys. 66, 201 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  17. Popper, K.R.: Die Naturwissenschaften 22, 807 (1934)

    Article  ADS  Google Scholar 

  18. Kim, Y.H., Shih, Y.: Found. Phys. 29, 1849 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

S.H.M wrote the main manuscript text and reviewed the manuscript.

Corresponding author

Correspondence to S. Hamid Mehdipour.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Using the same properties applied to (4), the third expression on the right-hand side of (9) can be reduced to

$$\begin{aligned}{} & {} \frac{1}{2}\left\langle \sqrt{1+\alpha \left( \hat{p}_1^2+\hat{p}_2^2 +\alpha \hat{p}_1^2\hat{p}_2^2\right) }\right\rangle \nonumber \\\ge & {} \frac{1}{2}\sum _{n=0}^\infty f(n)\alpha ^n\left\langle \left( \hat{p}_1^2+\hat{p}_2^2+\alpha \hat{p}_1^2\hat{p}_2^2\right) ^n\right\rangle \nonumber \\\ge & {} \frac{1}{2}\sum _{n=0}^\infty f(n)\alpha ^n\left\langle \left( \hat{p}_1^2+\hat{p}_2^2\right) ^n+\alpha n\hat{p}_1^2\hat{p}_2^2\left( \hat{p}_1^2+\hat{p}_2^2\right) ^{n-1}\right\rangle \nonumber \\\ge & {} \frac{1}{2}\sum _{n=0}^\infty f(n)\alpha ^n\left( \left\langle \hat{p}_1^2+\hat{p}_2^2\right\rangle ^n+\alpha n\left\langle \hat{p}_1^2\hat{p}_2^2\right\rangle \left\langle \hat{p}_1^2+\hat{p}_2^2\right\rangle ^{n-1}\right) \nonumber \\\ge & {} \frac{1}{2}\sqrt{1\!+\!\alpha \left( (\Delta \hat{p}_1)^2\!+\!(\Delta \hat{p}_2)^2\right) }\!+\!\frac{\alpha (\Delta \hat{p}_1)^2(\Delta \hat{p}_2)^2}{2\left( (\Delta \hat{p}_1)^2\!+\!(\Delta \hat{p}_2)^2\right) }\sum _{n=0}^\infty nf(n)\alpha ^n\left( (\Delta \hat{p}_1)^2\!+\!(\Delta \hat{p}_2)^2\right) ^n \nonumber \\\ge & {} \frac{1}{2}\sqrt{1+\alpha \left( (\Delta \hat{p}_1)^2+(\Delta \hat{p}_2)^2\right) }\left( 1+\alpha \frac{(\Delta \hat{p}_1)^2(\Delta \hat{p}_2)^2}{(\Delta \hat{p}_1)^2+(\Delta \hat{p}_2)^2}\right) \nonumber \\\ge & {} \frac{1}{2}\left( 1+\alpha \left( \frac{(\Delta \hat{p}_1)^2}{2}+\frac{(\Delta \hat{p}_2)^2}{2}+\frac{(\Delta \hat{p}_1)^2(\Delta \hat{p}_2)^2}{(\Delta \hat{p}_1)^2+(\Delta \hat{p}_2)^2}\right) \right) \end{aligned}$$
(A1)

Appendix B

The last expression on the right-hand side of (20) can be found as

$$\begin{aligned}{} & {} \sum _{k\ne l=1}^N\left\langle \sqrt{1+\alpha \left( \hat{p}_k^2+\hat{p}_l^2 +\alpha \hat{p}_k^2\hat{p}_l^2\right) }\right\rangle \nonumber \\\ge & {} \sum _{k\ne l=1}^N\sum _{n=0}^\infty f(n)\alpha ^n\left\langle \left( \hat{p}_k^2+\hat{p}_l^2 +\alpha \hat{p}_k^2\hat{p}_l^2\right) ^n\right\rangle \nonumber \\\ge & {} \sum _{k\ne l=1}^N\sum _{n=0}^\infty f(n)\alpha ^n\left\langle \left( \hat{p}_k^2+\hat{p}_l^2\right) ^n+\alpha n\hat{p}_k^2\hat{p}_l^2\left( \hat{p}_k^2+\hat{p}_l^2\right) ^{n-1}\right\rangle \nonumber \\\ge & {} \sum _{k\ne l=1}^N\sum _{n=0}^\infty f(n)\alpha ^n\left( \left\langle \hat{p}_k^2+\hat{p}_l^2\right\rangle ^n+\alpha n\left\langle \hat{p}_k^2\hat{p}_l^2\right\rangle \left\langle \hat{p}_k^2+\hat{p}_l^2\right\rangle ^{n-1}\right) \nonumber \\\ge & {} \sum _{k\ne l=1}^N\left( \sqrt{1+\alpha \left( (\Delta \hat{p}_k)^2+(\Delta \hat{p}_l)^2\right) }+\alpha \frac{(\Delta \hat{p}_k)^2(\Delta \hat{p}_l)^2}{(\Delta \hat{p}_k)^2+(\Delta \hat{p}_l)^2}\sum _{n=0}^\infty nf(n)\alpha ^n\left( (\Delta \hat{p}_k)^2+(\Delta \hat{p}_l)^2\right) ^n\right) \nonumber \\\ge & {} \sum _{k\ne l=1}^N\sqrt{1+\alpha \left( (\Delta \hat{p}_k)^2+(\Delta \hat{p}_l)^2\right) }\left( 1+\alpha \frac{(\Delta \hat{p}_k)^2(\Delta \hat{p}_l)^2}{(\Delta \hat{p}_k)^2+(\Delta \hat{p}_l)^2}\right) \nonumber \\\ge & {} \sum _{k\ne l=1}^N\left( 1+\alpha \left( \frac{(\Delta \hat{p}_k)^2}{2}+\frac{(\Delta \hat{p}_l)^2}{2}+\frac{(\Delta \hat{p}_k)^2(\Delta \hat{p}_l)^2}{(\Delta \hat{p}_k)^2+(\Delta \hat{p}_l)^2}\right) \right) \end{aligned}$$
(B1)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehdipour, S.H. Entanglement and Uncertainty in the Special-Relativistic Regime. Int J Theor Phys 63, 66 (2024). https://doi.org/10.1007/s10773-024-05604-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-024-05604-z

Keywords

Navigation