Skip to main content
Log in

Soliton Solutions for a Quantum Particle in One-dimensional Boxes

  • Research
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this study, we present a new analytical solution for the time-dependent Schrödinger equation for a free particle in one-dimensional case. The solution is derived by doing a non-linear transform to the linear Schrödinger equation and converting it into a Burger-like equation. We obtained an interesting non-stationary wave function where our soliton solution moves in time while maintaining its shape. The new solution is then analysed for three different cases: a periodic box, a box with hard wall boundary conditions and a periodic array of Dirac delta potentials. The resulting analytical solutions exhibit several interesting features including quantized soliton velocity and velocity bands. The analytical soliton solution that has been proposed, in our opinion, makes an important contribution to the study of quantum mechanics and we believe it will contribute significantly to our understanding of how particles behave in one-dimensional box potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Goldberg, A., Schey, H.M., Schwartz, J.L.: Computer-Generated Motion Pictures of One-Dimensional Quantum-Mechanical Transmission and Reflection Phenomena. Am. J. Phys. 35, 177–186 (1967)

    ADS  Google Scholar 

  2. Hermann, R.P.: Numerical simulation of a quantum particle in a box. J. Phys. A: Math. Gen. 30, 3967 (1997)

    ADS  MathSciNet  Google Scholar 

  3. Deutch, J.M., Kinsey, J.L., Silbey, R.: Momentum Autocorrelation Function of a Particle in a One-Dimensional Box. J. Chem. Phys. 53, 1047–1051 (1970)

    ADS  CAS  Google Scholar 

  4. Shaw, G.B.: Degeneracy in the particle-in-a-box problem. J. Phys. A: Math. Nucl. Gen. 7, 0301 (1974)

    MathSciNet  Google Scholar 

  5. Jinks, K.M.: A particle in a chemical box. J. Chem. Educ. 52, 312–313 (1975)

    CAS  Google Scholar 

  6. Al-Hashimi, M.H., Wiese, U.-J.: Alternative momentum concept for a quantum mechanical particle in a box. Phys. Rev. Res. 3, L042008 (2021)

    CAS  Google Scholar 

  7. Liboff, R.L.: Introductory Quantum Mechanics, pp. 157–161. Addison-Wesley Publishing Company (1992)

  8. Phillips, A.C.: Introduction to Quantum Mechanics. John Wiley and Sons Ltd. (2003)

  9. Surjit, S.: Kronig-Penney model in reciprocal lattice space. Am. J. Phys. 51, 179 (1983)

    ADS  Google Scholar 

  10. Bródka, A.: Summation methods of Coulomb interactions in computer simulations of a system with one-dimensional periodic boundary conditions. Mol. Phys. 101, 3177–3180 (2003)

    ADS  Google Scholar 

  11. Goodman, R.H., Weinstein, M.I., Holmes, P.J.: Nonlinear Propagation of Light in One-Dimensional Periodic Structures. J. Nonlinear Sci. 11, 123–168 (2001)

    ADS  MathSciNet  Google Scholar 

  12. Bródka, A.: Ewald type summations of Coulomb interactions in computer simulations of a system with one-dimensional periodic boundary conditions. J. Mol. Struct. 704, 101–105 (2004)

    ADS  Google Scholar 

  13. Li, W., Huang, D., Wang, K., Reichhardt, C., Reichhardt, C.J.O., Murillo, M.S., Feng, Y.: Phonon spectra of two-dimensional liquid dusty plasmas on a one-dimensional periodic substrate. Phys. Rev. E 98, 063203 (2018)

    ADS  CAS  Google Scholar 

  14. Wang, K., Huang, D., Reichhardt, C., Reichhardt, C.J.O., Murillo, M.S., Feng, Y.: Structures and diffusion of two-dimensional dusty plasmas on one-dimensional periodic substrates. Phys. Rev. E 98, 063204 (2018)

    ADS  CAS  Google Scholar 

  15. Li, W., Wang, K., Reichhardt, C., Reichhardt, C.J.O., Murillo, M.S., Feng, Y.: Depinning dynamics of two-dimensional dusty plasmas on a one-dimensional periodic substrate. Phys. Rev. E 100, 033207 (2019)

    ADS  CAS  PubMed  Google Scholar 

  16. Djakov, P., Mityagin, B.: Instability Zones of a Periodic 1D Dirac Operator and Smoothness of its PotentiaL. Commun. Math. Phys. 259, 139–183 (2005)

    ADS  MathSciNet  Google Scholar 

  17. Birman, M.S., Suslina, T.A.: The periodic Dirac operator is absolutely continuous. Integr. Equ. Oper. Theory 34, 377–395 (1999)

    MathSciNet  Google Scholar 

  18. Djakov, P., Mityagin, B.: Instability Zones of a Periodic 1D Dirac Operator and Smoothness of its Potential. Commun. Math. Phys. 259, 139–183 (2005)

    ADS  MathSciNet  Google Scholar 

  19. Vainberg, B.R.: On the Short Wave Asympotic Behaviour of Solutions of Stationary Problems and the Asympotic Behaviour as \(t \rightarrow \infty \) of Solutions od Non-Stationary Problems. Russ. Math. Surv. 30, 1 (1975)

    Google Scholar 

  20. Demkov, Yu.N., Osherov, V.I.: Stationary and nonstationary problems in quantum mechanics that can be solved by means of contour integration. Sov. Phys. JETP 26, 916–921 (1968)

    ADS  Google Scholar 

  21. Serkin, V.N., Hasegawa, A.: Novel Soliton Solutions of the Nonlinear Schrödinger Equation Model. Phys. Rev. Lett. 85, 4502 (2000)

    ADS  CAS  PubMed  Google Scholar 

  22. Manzetti, S., Trounev, A.: A Korteweg-DeVries type model for helical soliton solutions for quantum and continuum phenomena Int. J. Mod. Phys. C 32, 2150031 (2021)

    ADS  Google Scholar 

  23. Christ, N.H., Lee, T.D.: Quantum expansion of soliton solutions. Phys. Rev. D 12, 1606 (1975)

    ADS  MathSciNet  Google Scholar 

  24. Friedberg, R., Lee, T.D., Sirlin, A.: Class of scalar-field soliton solutions in three space dimensions. Phys. Rev. D 13, 2739 (1976)

    ADS  MathSciNet  CAS  Google Scholar 

  25. Younis, M., Seadawy, A.R., Baber, M.Z., Husain, S., Iqbal, M.S., Rizvi, S.T.R., Baleanu, D.: Analytical optical soliton solutions of the Schrödinger-Poisson dynamical system. Results Phys. 27, 104369 (2021)

    Google Scholar 

  26. Jackiw, R., So-Young, P.: Soliton solutions to the gauged nonlinear Schrödinger equation on the plane. Phys. Rev. Lett. 64, 2969 (1990)

    ADS  MathSciNet  CAS  PubMed  Google Scholar 

  27. Ahmed, M.S., Zaghrout, A.A.S., Ahmed, H.M.: Travelling wave solutions for the doubly dispersive equation using improved modified extended tanh-function method. Alex. Eng. J. 61, 7987–7994 (2022)

    Google Scholar 

  28. Mamun, A.-A., Ananna, S.N., Gharami, P.P., An, T., Asaduzzaman, Md.: The improved modified extended tanh-function method to develop the exact travelling wave solutions of a family of 3D fractional WBBM equations. Results Phys. 41, 105969 (2022)

    Google Scholar 

  29. Bertaina, S., Dutoit, C.-E., Van Tol, J., Dressel, M., Barbara, B., Stepanov, A.: Rabi oscillations of pinned solitons in spin chains: A route to quantum computation and communication. Phys. Rev. B 90, 060404 (2014)

    ADS  CAS  Google Scholar 

  30. Hasegawa, A.: Soliton-based optical communications: an overview. IEEE J. Sel. Top Quantum Electron. 6, 1161–1172 (2000)

    ADS  CAS  Google Scholar 

  31. Nakazawa, M., Kubota, H., Suzuki, K., Yamada, E., Sahara, A.: Recent progress in soliton transmission technology. Chaos 10, 486–514 (2000)

    ADS  PubMed  Google Scholar 

  32. Zhang, Q., Kschischang, F.R.: Improved Soliton Amplitude Estimation via the Continuous Spectrum. J. Light. Technol. 37, 3087–3099 (2019)

    ADS  Google Scholar 

  33. Zhang, Q., Kschischang, F.R.: Multistage Soliton Phase and Amplitude Estimation. J. Light. Technol. 40, 93–100 (2022)

    ADS  CAS  Google Scholar 

  34. Amiri, I.S., Alavi, S.E., Idrus, S.M.: Soliton Coding for Secured Optical Communication Link (2015)

  35. Syrwid, A., Sacha, K.: Quantum dark solitons in a Bose gas confined in a hard-wall box. Phys. Rev. A 96, 043602 (2017)

    ADS  Google Scholar 

  36. Kee, H.-Y., Kim, Y.-B., Maki, K.: Half-quantum vortex and \(\hat{d}\)-soliton in \(\rm Sr_2 RuO_4\). Phys. Rev. B 62, R9275 (2000)

    ADS  CAS  Google Scholar 

  37. Mello, B.A., González, J.A., Guerrero, L.E., López-Atencio, E.: Topological defects with long-range interactions. Phys. Lett. A 244, 277–284 (1998)

    ADS  CAS  Google Scholar 

  38. Vakaryuk, V., Stanev, V., Lee, W., Levchenko, A.: Topological Defect-Phase Soliton and the Pairing Symmetry of a Two-Band Superconductor: Role of the Proximity Effect. Phys. Rev. Lett. 109, 227003 (2012)

    ADS  PubMed  Google Scholar 

  39. Yefsah, T., Sommer, A., Ku, M., et al.: Heavy solitons in a fermionic superfluid. Nature 499, 426–430 (2013)

    ADS  CAS  PubMed  Google Scholar 

  40. Maki, K., Kumar, P.: Magnetic solitons in superfluid \(^3He\). Phys. Rev. B 14, 118 (1976)

    ADS  CAS  Google Scholar 

  41. Mineyev, V.P., Volovik, G.E.: Planar and linear solitons in superfluid \(^3He\). Phys. Rev. B 18, 3197 (1978)

    ADS  CAS  Google Scholar 

  42. Hamner, C., Chang, J.J., Engels, P., Hoefer, M.A.: Generation of Dark-Bright Soliton Trains in Superfluid-Superfluid Counterflow. Phys. Rev. Lett. 106, 065302 (2011)

    ADS  CAS  PubMed  Google Scholar 

  43. Antezza, M., Dalfovo, F., Pitaevskii, L.P., Stringari, S.: Dark solitons in a superfluid Fermi gas. Phys. Rev. A 76, 043610 (2007)

    ADS  Google Scholar 

  44. Scott, R.G., Dalfovo, F., Pitaevskii, L.P., Stringari, S.: Dynamics of Dark Solitons in a Trapped Superfluid Fermi Gas. Phys. Rev. Lett. 106, 185301 (2011)

    ADS  CAS  PubMed  Google Scholar 

  45. Korchemsky, G.P., Krichever, I.M.: Solitons in high-energy QCD. Nucl. Phys. B. 505, 387–414 (1997)

    ADS  Google Scholar 

  46. Gross, D.J., Nekrasov, N.A.: Solitons in noncommutative gauge theory. JHEP 2001(03), 044 (2001)

    Google Scholar 

  47. Lechtenfeld, O., Popov, A.D.: Noncommutative multi-solitons in \(2+1\) dimensions. JHEP 2001(11), 040 (2001)

    Google Scholar 

  48. Baskoutas, S., Poulopoulos, P., Karoutsos, V., Angelakeris, M., Flevaris, N.K.: Strong quantum confinement effects in thin zinc selenide films. Chem. Phy. Lett. 417, 461–464 (2006)

    ADS  CAS  Google Scholar 

  49. Bullough, R.K., Wadati, M.: Information storage and retrieval by stopping pulses of light\(^1\). J. Mod. Opt. 51, 255–284 (2004)

    ADS  MathSciNet  CAS  Google Scholar 

  50. Zhang, C.-C., Chen, A.-H.: Bilinear form and new multi-soliton solutions of the classical Boussinesq-Burgers system. Appl. Math. Lett. 58, 133–139 (2016)

    MathSciNet  Google Scholar 

  51. Bazeia, D., et al.: Soliton stability in systems of two real scalar fields. J. Phys. A: Math. Gen. 30, 8157 (1997)

    ADS  MathSciNet  Google Scholar 

  52. Makhankov, V.G.: Dynamics of classical solitons (in non-integrable systems). Phys. Rep. 35, 1–128 (1978)

    ADS  MathSciNet  Google Scholar 

  53. Benton, E.R., Platzman, G.W.: A table of solutions of the one-dimensional Burgers equation. Quart. Appl. Math. 30, 195–212 (1972)

    MathSciNet  Google Scholar 

  54. Mittal, R.C., Arora, G.: Numerical solution of the coupled viscous Burgers’ equation. Commun. Nonlinear Sci. Numer. Simulat. 16, 1304–1313 (2011)

    ADS  MathSciNet  Google Scholar 

  55. Ramadan, M.A., El-Danaf, T.S.: Numerical treatment for the modified burgers equation. Math. Comput. Simul. 70, 90–98 (2005)

    MathSciNet  Google Scholar 

  56. Banasiak, J.: Dynamical systems and nonlinear partial differential equation. 137 (2018)

  57. Liu, Y., Wang, D.-S.: Exotic wave patterns in Riemann problem of the high-order Jaulent-Miodek equation: Whitham modulation theory. Stud. Appl. Math. 149, 588–630 (2022)

    MathSciNet  Google Scholar 

  58. Yakushevich, L.V.: Nonlinear physics of DNA. John Wiley and Sons (2004)

  59. Kosevich, A.M., Gann, V.V., Zhukov, A.I., et al.: Magnetic soliton motion in a nonuniform magnetic field. J. Exp. Theor. Phys. 87, 401–407 (1998)

    ADS  Google Scholar 

  60. Zabusky, N.J., Kruskal, M.D.: Interaction of “Solitons” in a Collisionless Plasma and the Recurrence of Initial States. Phys. Rev. Lett. 15, 240 (1965)

  61. Ashcroft, N.W., Mermin, D.N.: Solid state physics. Saunders College Publishing, New York (1976)

    Google Scholar 

  62. Blinder, S.M.: "Kronig-Penney Model with Dirac Comb". Wolfram Demonstrations Project. http://demonstrations.wolfram.com/KronigPenneyModelWithDiracComb/ (2022)

  63. Jaynes, E.T.: Quantum Beats. In: Barut, A.O. (eds) Foundations of Radiation Theory and Quantum Electrodynamics. Springer, Boston, MA. (1980)

  64. Sen, D.: The uncertainty relations in quantum mechanics. Curr. Sci. 107, 203–218 (2014)

    Google Scholar 

Download references

Acknowledgements

One of the authors (A. J.) wants to thank IIT Mandi for providing HTRA.

Author information

Authors and Affiliations

Authors

Contributions

All authors whose names appear on the submission made substantial contributions to the conception or design of the work and approved the version to be published.

Corresponding author

Correspondence to Anjali Jangid.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jangid, A., Devi, P., Soni, H. et al. Soliton Solutions for a Quantum Particle in One-dimensional Boxes. Int J Theor Phys 63, 54 (2024). https://doi.org/10.1007/s10773-024-05582-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-024-05582-2

Keywords

Navigation