Skip to main content
Log in

Novel Soliton Molecules, Periodic Wave and other Diverse Wave Solutions to the New (2 + 1)-Dimensional Shallow Water Wave Equation

  • RESEARCH
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this research, we focus on some novel exact solutions of the new (2 + 1)-dimensional shallow water wave equation (SWWE). First, the soliton molecules on the (x,y)-, (x,t)- and (y,t)-planes are constructed via assigning the velocity resonance conditions to the multiple soliton solutions (MSSs) that can be derived via the Hirota method. Second, the periodic wave solutions are explored by means of the new homoclinic approach. Finally, the other diverse wave solutions including the kink wave, singular wave and the singular periodic wave solutions are also plumbed by the sub-equation approach (SEA). The dynamic performances of the extracted solutions are presented graphically to unveil the nonlinear physical characteristics. As we know, the extracted solutions in this paper are all new and have not been investigated in other literature, which can help us make sense of the nonlinear dynamics of the new (2 + 1)-dimensional SWWE better.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

Abbreviations

SWWE:

Shallow water wave equation

MSSs:

Multiple soliton solutions

SM:

Soliton molecules

VRCs:

Velocity resonance conditions

PWSs:

Periodic wave solutions

SEA:

Sub-equation approach

NHA:

New homoclinic approach

References

  1. Lü, X., Hui, H.W., Liu, F.F., Bai, Y.L.: Stability and optimal control strategies for a novel epidemic model of COVID-19. Nonlinear Dyn. 106, 1491 (2021)

    PubMed  PubMed Central  Google Scholar 

  2. Yin, M.Z., Zhu, Q.W., Lü, X.: Parameter estimation of the incubation period of COVID-19 based on the doubly interval-censored data model. Nonlinear Dyn. 106, 1347–1358 (2021)

    PubMed  PubMed Central  Google Scholar 

  3. Kumar, S., Almusawa, H., Hamid, I.: Abundant closed-form solutions and solitonic structures to an integrable fifth-order generalized nonlinear evolution equation in plasma physics. Results Phys. 26, 104453 (2021)

    Google Scholar 

  4. Wang, K.J., Shi, F.: A novel computational approach to the local fractional (3+1)-dimensional modified Zakharov-Kuznetsov equation. Fractals 32(1), 2450026 (2024)

    Google Scholar 

  5. Kaur, L., Wazwaz, A.M.: Lump, breather and solitary wave solutions to new reduced form of the generalized BKP equation. Int. J. Numer. Meth. Heat Fluid Flow 29(2), 569–579 (2019)

    Google Scholar 

  6. Nazir, U., Sohail, M., Singh, A., et al.: Finite element analysis for thermal enhancement in power law hybrid nanofluid. Front. Phys. 10, 996174 (2022)

  7. Muhammad, S., Nazir, U., El-Zahar, E.R., et al.: A study of triple-mass diffusion species and energy transfer in Carreau-Yasuda material influenced by activation energy and heat source. Sci. Rep. 12, 10219 (2022)

    Google Scholar 

  8. He, C.H., Tian, D., Moatimid, G.M., Salman, H.F., Zekry, M.H.: Hybrid Rayleigh-Van der Pol-Duffing Oscillator (HRVD): Stability Analysis and Controller. J. Low Freq. Noise Vib. Act. Control 41(1), 244–268 (2022)

    Google Scholar 

  9. Wang, K.J.: Dynamic properties of large amplitude nonlinear oscillations using Hamiltonian-based frequency formulation, Kuwait. J. Sci. 51(2), 100186 (2024)

    Google Scholar 

  10. Ma, Y.X., Tian, B., Qu, Q.X.: Painlevé analysis, Bäcklund transformations and traveling-wave solutions for a (3+1)-dimensional generalized Kadomtsev-Petviashvili equation in a fluid. Int. J. Mod. Phys. B 35(07), 2150108 (2021)

    ADS  Google Scholar 

  11. Yin, Y.H., Lü, X., Ma, W.X.: Bäcklund transformation, exact solutions and diverse interaction phenomena to a (3+1)-dimensional nonlinear evolution equation. Nonlinear Dyn. 108(4), 4181–4194 (2022)

    Google Scholar 

  12. Han, P.F., Bao, T.: Bäcklund transformation and some different types of N-soliton solutions to the (3+1)-dimensional generalized nonlinear evolution equation for the shallow-water waves. Math. Methods Appl. Sci. 44(14), 11307–11323 (2021)

    ADS  MathSciNet  Google Scholar 

  13. Du, Z., Tian, B., Xie, X.Y.: Bäcklund transformation and soliton solutions in terms of the Wronskian for the Kadomtsev-Petviashvili-based system in fluid dynamics. Pramana 90(4), 1–6 (2018)

    Google Scholar 

  14. Rabie, W.B., Ahmed, H.M.: Dynamical solitons and other solutions for nonlinear Biswas-Milovic equation with Kudryashov’s law by improved modified extended tanh-function method. Optik 245, 167665 (2021)

    ADS  Google Scholar 

  15. Dukhnovsky, S.A.: The tanh-function method and the (G/G)-expansion method for the kinetic McKean system. Differ. Equ. Control Process. 2, 87–100 (2021)

    MathSciNet  Google Scholar 

  16. Shen, Y., Tian, B., Zhou, T.Y., et al.: N-fold Darboux transformation and solitonic interactions for the Kraenkel–Manna–Merle system in a saturated ferromagnetic material. Nonlinear Dyn. 111(3), 2641–2649 (2023)

    Google Scholar 

  17. Li, B.Q., Ma, Y.L.: Extended generalized Darboux transformation to hybrid rogue wave and breather solutions for a nonlinear Schrödinger equation. Appl. Math. Comput. 386, 125469 (2020)

    MathSciNet  Google Scholar 

  18. Shang, D.: Exact solutions of coupled nonlinear Klein-Gordon equation. Appl. Math. Comput. 217(4), 1577–1583 (2010)

    MathSciNet  Google Scholar 

  19. Zayed, E.M.E., Gepreel, K.A., El-Horbaty, M.: Optical solitons in birefringent fibers with Kaup-Newell equation using two integration schemes. Optik 251, 167992 (2022)

    ADS  Google Scholar 

  20. Afzal, U., Raza, N., Murtaza, I.G.: On soliton solutions of time fractional form of Sawada-Kotera equation. Nonlinear Dyn. 95(1), 391–405 (2019)

    Google Scholar 

  21. Raza, N., Javid, A.: Optical dark and dark-singular soliton solutions of (1+ 2)-dimensional chiral nonlinear Schrodinger’s equation. Waves Random Complex Media. 29(3), 496–508 (2019)

    ADS  MathSciNet  Google Scholar 

  22. Abdou, M.A.: The extended F-expansion method and its application for a class of nonlinear evolution equations. Chaos, Solitons Fractals 31(1), 95–104 (2017)

    ADS  MathSciNet  Google Scholar 

  23. Rabie, W.B., Ahmed, H.M.: Cubic-quartic optical solitons and other solutions for twin-core couplers with polynomial law of nonlinearity using the extended F-expansion method. Optik 253, 168575 (2022)

    ADS  CAS  Google Scholar 

  24. Abdullah, F.A., Islam, M.T., Gómez-Aguilar, J.F., et al.: Impressive and innovative soliton shapes for nonlinear Konno-Oono system relating to electromagnetic field. Opt. Quant. Electron. 55(1), 69 (2023)

    Google Scholar 

  25. Islam, M.T., Akter, M.A., Gomez-Aguilar, J.F., et al.: Innovative and diverse soliton solutions of the dual core optical fiber nonlinear models via two competent techniques. J. Nonlinear Opt. Phys. Mater. 32(4), 2350037 (2023)

    ADS  Google Scholar 

  26. Kaur, L., Wazwaz, A.M.: Bright-dark optical solitons for Schrödinger-Hirota equation with variable coefficients. Optik 179, 479–484 (2019)

    ADS  Google Scholar 

  27. Wazwaz, A.M., Kaur, L.: Optical solitons and Peregrine solitons for nonlinear Schrödinger equation by variational iteration method. Optik 179, 804–809 (2019)

    ADS  Google Scholar 

  28. Raza, N., Jannat, N., Gómez-Aguilar, J.F., et al.: New computational optical solitons for generalized complex Ginzburg-Landau equation by collective variables. Mod. Phys. Lett. B 36(28n29), 2250152 (2022)

    ADS  MathSciNet  CAS  Google Scholar 

  29. Raza, N., Arshed, S., Basendwah, G.A.: A class of new breather, lump, two-wave and three-wave solutions for an extended Jimbo-Miwa model in (3+ 1)-dimensions. Optik 292, 171394 (2023)

    ADS  Google Scholar 

  30. Mubaraki, A.M., Nuruddeen, R.I., Ali, K.K., et al.: Additional solitonic and other analytical solutions for the higher-order Boussinesq-Burgers equation. Opt. Quant. Electron. 56(2), 165 (2024)

    Google Scholar 

  31. Zhang, Z., Li, B., Chen, J.: The nonlinear superposition between anomalous scattering of lumps and other waves for KPI equation. Nonlinear Dyn. 108(4), 4157–4169 (2022)

    Google Scholar 

  32. Wazwaz, A.M.: New integrable (2+1)-and (3+1)-dimensional shallow water wave equations: multiple soliton solutions and lump solutions. Int. J. Numer. Meth. Heat Fluid Flow 32(1), 138–149 (2022)

    Google Scholar 

  33. Lü, X., Chen, S.J.: Interaction solutions to nonlinear partial differential equations via Hirota bilinear forms: one-lump-multi-stripe and one-lump-multi-soliton types. Nonlinear Dyn. 103, 947–977 (2021)

    Google Scholar 

  34. Wang, K.J., Liu, J.H., Shi, F.: On the semi-domain soliton solutions for the fractal (3+1)-dimensional generalized Kadomtsev-Petviashvili-Boussinesq equation. Fractals 32(1), 2450024 (2024). https://doi.org/10.1142/S0218348X24500245

    Article  Google Scholar 

  35. Wazwaz, A.M., El-Tantawy, S.A.: Solving the (3+1)-dimensional KP-Boussinesq and BKP-Boussinesq equations by the simplified Hirota’s method. Nonlinear Dyn. 88, 3017–3021 (2017)

    MathSciNet  Google Scholar 

  36. Wang, K.J.: Dynamics of breather, multi-wave, interaction and other wave solutions to the new (3+1)-dimensional integrable fourth-order equation for shallow water waves. Int. J. Numer. Meth. Heat Fluid Flow 33(11), 3734–3747 (2023). https://doi.org/10.1108/HFF-07-2023-0385

    Article  Google Scholar 

  37. Wang, K.-J., Shi, F., Xu, P., Li, S.: Non-singular complexiton, singular complexiton and complex multiple soliton solutions to the (3+1)-dimensional nonlinear evolution equation. Math. Methods Appl. Sci. (2024). https://doi.org/10.1002/mma.9951

  38. Ma, H., Wang, Y., Deng, A.: Soliton molecules and some novel mixed solutions for the extended Caudrey-Dodd-Gibbon equation. J. Geom. Phys. 168, 104309 (2021)

    MathSciNet  Google Scholar 

  39. Ma, H.C., Gao, Y.D., Deng, A.P.: Solutions of novel soliton molecules and their interactions of (2+1)-dimensional potential Boiti-Leon-Manna-Pempinelli equation. Chin. Phys. B 31(7), 070201 (2022)

    ADS  Google Scholar 

  40. Wang, K.J.: Soliton molecules and other diverse wave solutions of the (2+1)-dimensional Boussinesq equation in shallow water. Eur. Phys. J. Plus 138(10), 891 (2023)

    Google Scholar 

  41. Ren, B., Lin, J.: D’Alembert wave and soliton molecule of the modified Nizhnik-Novikov-Veselov equation. Eur. Phys. J. Plus 136(1), 123 (2021)

    CAS  Google Scholar 

  42. Wang, K.J.: Nonlinear dynamics of soliton molecules, hybrid interactions and other wave solutions for the (3+1)-dimensional generalized Kadomtsev-Petviashvili-Boussinesq equation. Mod. Phys. Lett. B. 2450194 (2024). https://doi.org/10.1142/S021798492450194X

  43. Wang, K.J., Feng, S.: Multi-soliton solutions and soliton molecules of the (2+1)-dimensional Boiti-Leon-Manna-Pempinelli equation for the incompressible fluid. EPL (2024). https://doi.org/10.1209/0295-5075/ad219d

    Article  Google Scholar 

  44. Wazwaz, A.M., Kaur, L.: New integrable Boussinesq equations of distinct dimensions with diverse variety of soliton solutions. Nonlinear Dyn. 97, 83–94 (2019)

    Google Scholar 

  45. Yokus, A., Isah, M.A.: Stability analysis and solutions of (2+ 1)-Kadomtsev–Petviashvili equation by homoclinic technique based on Hirota bilinear form. Nonlinear Dyn. 109(4), 3029–3040 (2022)

    Google Scholar 

  46. Wang, K.J.: Resonant multiple wave, periodic wave and interaction solutions of the new extended (3+1)-dimensional Boiti-Leon-Manna-Pempinelli equation. Nonlinear Dyn. 111(17), 16427–16439 (2023)

    Google Scholar 

  47. Akinyemi, L., Şenol, M., Iyiola, O.S.: Exact solutions of the generalized multidimensional mathematical physics models via sub-equation method. Math. Comput. Simul. 182, 211–233 (2021)

    MathSciNet  Google Scholar 

  48. Bekir, A., Aksoy, E., Cevikel, A.C.: Exact solutions of nonlinear time fractional partial differential equations by sub-equation method. Math. Methods Appl. Sci. 38(13), 2779–2784 (2015)

    ADS  MathSciNet  Google Scholar 

  49. Razzaq, W., Zafar, A., Ahmed, H.M., et al.: Construction solitons for fractional nonlinear Schrödinger equation with β-time derivative by the new sub-equation method. J. Ocean Eng. Sci. (2022). https://doi.org/10.1016/j.joes.2022.06.013

    Article  Google Scholar 

  50. Yepez-Martinez, H., Gómez-Aguilar, J.F.: Optical solitons solution of resonance nonlinear Schrödinger type equation with Atangana’s-conformable derivative using sub-equation method. Waves Random Complex Media 31(3), 573–596 (2021)

    ADS  MathSciNet  Google Scholar 

  51. Wang, K.J.: Resonant Y-type soliton, X-type soliton and some novel hybrid interaction solutions to the (3+1)-dimensional nonlinear evolution equation for shallow-water waves. Phys. Scr. 99(2), 025214 (2024)

    ADS  Google Scholar 

  52. Ma, H., Chen, X., Deng, A.: Resonance Y-type soliton and new hybrid solutions generated by velocity resonance for a (2+1)-dimensional generalized Bogoyavlensky-Konopelchenko equation in a fluid. Nonlinear Dyn. 111(8), 7599–7617 (2023)

    Google Scholar 

  53. Wang, K.J.: Soliton molecules, Y-type soliton and complex multiple soliton solutions to the extended (3+1)-dimensional Jimbo-Miwa equation. Physica Scripta. 99(1), 015254 (2024)

Download references

Funding

This work was supported by the Key Programs of Universities in Henan Province of China (22A140006), Program of Henan Polytechnic University (B2018-40).

Author information

Authors and Affiliations

Authors

Contributions

Material preparation, data collection and analysis were performed by Kang-Jia Wang. The draft of the manuscript was written by Kang-Jia Wang and Peng Xu. Software by Shuai Li and Feng Shi.

Corresponding author

Correspondence to Peng Xu.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, KJ., Li, S., Shi, F. et al. Novel Soliton Molecules, Periodic Wave and other Diverse Wave Solutions to the New (2 + 1)-Dimensional Shallow Water Wave Equation. Int J Theor Phys 63, 53 (2024). https://doi.org/10.1007/s10773-024-05577-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-024-05577-z

Keywords

Navigation