Skip to main content
Log in

Influence of the Stark Shift and Field Nonclassicality on the Dynamics of Non-classical Correlations of N two-level Atomic System

  • Research
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We investigate the dynamical evolution of the global quantum discord (GQD) and the von Neumann entropy (VNE) of a moving two-, three-, and four two-level atomic system (TLS) (\(N = 2, 3, 4\)). These systems interact with a single-mode Fock and coherent fields in the cavity under the influence of the Stark effect. According to the evolution of the GQD and VNE, quantum correlations for both the Fock and coherent fields decrease with an increase in the Stark parameter. Quantum correlations deplete more rapidly in the presence of coherent field as compared to the Fock field with increasing value of the Stark parameter. The maximum amount of quantum entanglement that the quantum system can achieve with an increase in the Stark shift parameter is seen to decrease more quickly in the presence of the Fock field than it does in the coherent field. Moreover, the large N systems are more prone to the increasing values of the Stark shift parameter. The GQD increases with the number of atoms N for both the Fock and the coherent field while the VNE increases only with the Fock field. Additionally, it has been found that for the larger N atomic systems, atomic motion has no effect on the period of entanglement oscillations as the number of atoms increases. Periodic behavior for the GQD and VNE is seen for both the initial mixed and pure states in the presence of the Stark shift for the Fock and coherent fields, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)

    Article  ADS  Google Scholar 

  2. Greenberger, D.M., Horne, M.A., Zeilinger, A.: Bell’s theorem without inequalities. Am. J. Phys. 58, 1131 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  3. Pan, J.W., et al.: Experimental test of quantum nonlocality in three-photon Greenberger–Horne–Zeilinger entanglement. Nature (London) 403, 515 (2000)

  4. Bennett, C.H., et al.: Teleportation of quantum states. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  5. Jaynes, E.T., Cummings, F.W.: Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc IEEE 51, 89 (1963)

    Article  Google Scholar 

  6. Cardimona, D.A.: Effect of atomic-state coherence and spontaneous emission on three-level dynamics. Phys Rev A 41, 5016 (1990)

    Article  ADS  Google Scholar 

  7. Faghihi, M.J., Tavassoly, M.K., Hatami, M.: Dynamics of entanglement of a three-level atom in motion interacting with two coupled modes including parametric down conversion. Physica A 407, 100 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  8. Baghshahi, H.R., Tavassoly, M.K.: Entanglement, quantum statistics and squeezing of two \(\Xi \)-type three-level atoms interacting nonlinearly with a single-mode field. Phys. Scr. 89, 075101 (2014)

    Article  ADS  Google Scholar 

  9. Baghshahi, H.R., Tavassoly, M.K., Behjat, A.: Entropy squeezing and atomic inversion in the k-photon Jaynes-Cummings model in the presence of the Stark shift and a Kerr medium: A full nonlinear approach. Chin. Phys. B 23, 074203 (2014)

    Article  Google Scholar 

  10. Sukumar, C.V., Buck, B.: Multi-phonon generalisation of the Jaynes-Cummings model. Phys. Lett. A 83, 211 (1981)

    Article  ADS  Google Scholar 

  11. Faghihi, M.J., Tavassoly, M.K.: Quantum entanglement and position-momentum entropic squeezing of a moving Lambda-type three-level atom interacting with a single-mode quantized field with intensity-dependent coupling. J. Phys. B 46, 145506 (2013)

    Article  ADS  Google Scholar 

  12. Alsing, P., Guo, D.-S., Carmichael, H.J.: Dynamic Stark effect for the Jaynes-Cummings system. Phys. Rev. A 45, 5135 (1992)

    Article  ADS  Google Scholar 

  13. Biswas, A., Agarwal, G.S.: Quantum logic gates using Stark-shifted Raman transitions in a cavity. Phys. Rev. A 69, 062306 (2004)

    Article  ADS  Google Scholar 

  14. Dasgupta, S., Biswas, A., Agarwal, G.S.: Implementing Deutsch-Jozsa algorithm using light shifts and atomic ensembles. Phys. Rev. A 71, 012333 (2005)

    Article  ADS  Google Scholar 

  15. Zou, X.-B., Xiao, Y.-F., Li, S.-B., Guo, G.-C.: Quantum phase gate through a dispersive atom-field interaction. Phys. Rev. A 75, 064301 (2007)

    Article  ADS  Google Scholar 

  16. Fernee, M.J., -Dunlop, H.R., Milburn, G.J.: Improving single-photon sources with Stark tuning. Phys. Rev. A 75, 043815 (2007)

  17. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  18. Bennett, C.H., Brassard, G.: Conf. on Computers, Systems and Signal Processing (Bangalore, India) (New York: IEEE) p 175 (1984)

  19. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  20. Knill, E., Laflamme, R.: Power of one bit of quantum information. Phys. Rev. Lett. 81, 5672 (1998)

    Article  ADS  Google Scholar 

  21. Datta, A., Flammia, S.T., Caves, C.M.: Entanglement and the power of one qubit. Phys. Rev. A. 72, 042316 (2005)

    Article  ADS  Google Scholar 

  22. Datta, A., Vidral, G.: Role of entanglement and correlations in mixed-state quantum computation. Phys. Rev. A. 75, 042310 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  23. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017109 (2001)

    Article  Google Scholar 

  24. Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A 34, 6899 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  25. Rulli, C.C., Sarandy, M.S.: Global quantum discord in multipartite systems. Phys. Rev. A. 84, 042109 (2011)

    Article  ADS  Google Scholar 

  26. Xu, J.: Analytical expressions of global quantum discord for two classes of multi-qubit states. Phys. Lett. A 377, 238 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  27. Majtey, A.P., Plastino, A.R., Plastino, A.: New features of quantum discord uncovered by q-entropies. Physica A 391, 2491 (2012)

    Article  ADS  Google Scholar 

  28. Abdel-Aty, M., Sebawe, A.M., Obada, A.S.F.: Uncertainty relation and information entropy of a time-dependent bimodal two-level system. J. Phys. B 35, 4773 (2002)

    Article  ADS  Google Scholar 

  29. Abdel-Khalek, S., Obada, A.-S.F.: The atomic Wehrl entropy of a V-type three-level atom interacting with two-mode squeezed vacuum state. J. Russ. Laser Res. 30, 146 (2009)

    Article  Google Scholar 

  30. Eleuch, H., Guerin, S., Jauslin, H.R.: Effects of an environment on a cavity-quantum-electrodynamics system controlled by bichromatic adiabatic passage. Phys. Rev. A 85, 013830 (2012)

    Article  ADS  Google Scholar 

  31. Abdel-Khalek, S., Nofal, T.A.: Correlation and entanglement of a three-level atom inside a dissipative cavity. Physica A 390, 2626 (2011)

    Article  ADS  Google Scholar 

  32. Golkar, S., Tavassoly, M.K., Nourmandipour, A.: Entanglement dynamics of moving qubits in a common environment. J. of the Opt. Soc. of Am. B 37, 400 (2020)

  33. Anwar, S.J., Ramzan, M., Khan, M.K.: Effect of Stark- and Kerr-like medium on the entanglement dynamics of two three-level atomic systems. Quantum Inf. Process. 18, 192 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  34. Faghihi, M.J., Tavassoly, M.K.: Quantum entanglement and position-momentum entropic squeezing of a moving Lambda-type three-level atom interacting with a single-mode quantized field with intensity-dependent coupling. J. Phys. B: At. Mol. Opt. Phys. 46, 145506 (2013)

    Article  ADS  Google Scholar 

  35. Anwar, S.J., Ramzan, M., Usman, M., Khan, M.K.: Quantum fisher information of two-level atomic system under the influence of thermal field. Intrinsic Decoherence, Stark Effect and Kerr-Like Medium, JQIS 11, 24 (2021)

    Google Scholar 

  36. Anwar, S.J., Ramzan, M., Usman, M., Khan, M.K.: Stark and Kerr effects on the dynamics of moving N-level atomic system. JQIS 9, 22 (2019)

    Article  Google Scholar 

  37. Anwar, S.J., Usman, M., Ramzan, M., Khan, M.K.: Quantum fisher information and entanglement of moving two two-level atoms under the influence of environmental effects. Physics 1, 131 (2019)

    Article  ADS  Google Scholar 

  38. Tavis, M., Cummings, F.W.: Exact solution for an N-Molecule–Radiation-Field Hamiltonian. Phys. Rev. 170, 379 (1968)

    Article  ADS  Google Scholar 

  39. Moya-Cessa, H., Bužek, V., Knight, P.L.: Power broadening and shifts of micromaser lineshapes. Optics Commun. 85, 267 (1991)

    Article  ADS  Google Scholar 

  40. Schlicher, R.R.: Jaynes-Cummings model with atomic motion. Opt. Commun. 70, 97 (1989)

    Article  ADS  Google Scholar 

  41. Milburn, G.J.: Intrinsic decoherence in quantum mechanics. Phys. Rev. A 44, 5401 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  42. Campbell, S., Mazzola, L., De Chiara, G., Apollaro, T.J.G., Plastina, F., Busch, Th., Paternostro, M.: Global quantum correlations in finite-size spin chains. New J. Phys. 15, 043033 (2013)

    Article  ADS  Google Scholar 

  43. von Neumann, J.: Mathematische Grundlagen der Quantenmechanik, 2nd edn. Springer, Berlin (1996)

    Book  Google Scholar 

Download references

Acknowledgements

The researchers would like to acknowledge Deanship of Scientific Research, Taif University for funding this work.

Author information

Authors and Affiliations

Authors

Contributions

M. I.: Conceptualization, methodology, writing—original draft, writing—reviewing and editing. S. J. A.: Visualization, supervision, reviewing and editing. M. K. K.: Writing—original draft, writing—reviewing and editing. S. A.: methodology, reviewing and editing. H. S. A.: Visualization, reviewing and editing, S. A.-K.: Validation, investigation, reviewing. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to S. Abdel-Khalek.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibrahim, M., Anwar, S.J., Khan, M.K. et al. Influence of the Stark Shift and Field Nonclassicality on the Dynamics of Non-classical Correlations of N two-level Atomic System. Int J Theor Phys 62, 261 (2023). https://doi.org/10.1007/s10773-023-05506-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-023-05506-6

Keywords

Navigation