Skip to main content
Log in

Approximate Solution of GCF PDM Schrödinger Equation for a Symmetrical Modified Pöschl–Teller Potential by GCF Laplace Transform Method

  • RESEARCH
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper, we introduce a new definition of the general conformable fractional (GCF) Laplace transform with respect to the function Φ generated by the fractional conformable function ϕ. By the new definition, the usual Laplace transform and the \(\rho -\) Laplace transform are special cases of the GCF Laplace transform. We prove several important properties of these GCF Laplace transforms. In addition, we also define the GCF cylindrical coordinates system and derive the GCF Laplace operator on these coordinates. Furthermore, we study the approximate solution of the GCF position-dependent mass (PDM) Schrödinger equation for a symmetrical modified Pöschl-Teller potential in the GCF cylindrical coordinate system by using the GCF Laplace transform method. The GCF radial wave function and GCF energy eigenvalue are obtained from the approximate solution of the GCF Schrödinger equation. The behavior of the bound state conformable fractional energy levels was demonstrated and analyzed by using the computational method for various values of the order of conformable fractionality \(\alpha\), quantum number, and mass of the molecule. Moreover, the maximum conformable fractional energy-eigenvalue is obtained with respect to the influence of the order of conformable fractionality \(\alpha\) and mass for diatomic molecules \({\mathrm{H}}_{2}\), LiH, and HCl.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

We do not use primary or secondary data in our paper. We give the values of parameters from literature [35].

References

  1. Abdeljawad, T.: On conformable fractional calculus. J. Comput. Appl. Math. 279, 57–66 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Akkurt, A., Yildirim, M.E., Yildirim, H.: A new generalized fractional derivative and integral. Konuralp. J. Math. 5(2), 248–259 (2017)

    MathSciNet  MATH  Google Scholar 

  3. Aldandani, M., Naifar, O., Makhlouf, A.B.: Practical stability for nonlinear systems with generalized conformable derivative. AIMS Math. 8(7), 15618–15632 (2023)

    Article  MathSciNet  Google Scholar 

  4. Al-Zhour, Z., Al-Mutairi, N., Alrawajeh, F., Alkhasawneh, R.: New theoretical results and applications on conformable fractional natural transform. Ain Shams Eng. J. 12(1), 927–933 (2021)

    Article  Google Scholar 

  5. Atangana, A., Baleanu, D., Alsaedi, A.: New properties of conformable derivative. Open Math. 13(1). (2015)

  6. Ayata, M., Ozkan, O.: A new application of conformable Laplace decomposition method for fractional Newell-Whitehead-Segel equation. AIMS Math. 5(6), 7402–7412 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ayata, M., Özkan, O.: An analytical solution to conformable fractional fokker-planck equation. Karaelmas Fen ve Müh. Derg. 12(1), 9–14 (2022)

    Google Scholar 

  8. Ben Makhlouf, A., El-Hady, E.S., Boulaaras, S., Hammami, M.A.: Stability analysis for differential equations of the general conformable type. Complexity 2022, 1–6 (2022)

    Article  Google Scholar 

  9. Biswas, B., Debnath, S.: Bound states of the dirac-kratzer-fues problem with spin and pseudo-spin symmetry via Laplace transform approach. Bulg. J. Phys 43, 89–99 (2016)

    Google Scholar 

  10. Dong, S.H., Huang, W.H., Sedaghatnia, P., Hassanabadi, H.: Exact solutions of an exponential type position dependent mass problem. Results Phys 34, 105294 (2022)

    Article  Google Scholar 

  11. Dong, X., Chen, Y.: Analytical approach for time-conformable Schrödinger equations. J. Appl. Sci. Eng. 26(10), 1451–1458 (2023)

    Google Scholar 

  12. Duque, C.A., Mora-Ramos, M.E., Kasapoglu, E.S.İN., Sari, H.Ü.S.E.Y.İN., Sökmen, I.: Combined effects of intense laser field and applied electric field on exciton states in GaAs quantum wells: transition from the single to double quantum well. Phy. Status Solidi B. 249(1), 118–127 (2012)

    Article  ADS  Google Scholar 

  13. El-Nabulsi, R.A.: Some implications of position-dependent mass quantum fractional Hamiltonian in quantum mechanics. Eur. Phys. J. Plus 134(5), 192 (2019)

    Article  Google Scholar 

  14. El-Nabulsi, R.A.: A generalized self-consistent approach to study position-dependent mass in semiconductors organic hetero structures and crystalline impure materials. Physica E 124, 114295 (2020)

    Article  Google Scholar 

  15. El-Nabulsi, R.A., Anukool, W.: Quantum dots and cuboid quantum wells in fractal dimensions with position-dependent masses. Appl. Phys. A. 127, 1–15 (2021)

    Article  Google Scholar 

  16. Eroğlu, B.B., Avci, D., Özdemir, N.: Optimal control problem for a conformable fractional heat conduction equation. Acta Phys. Pol. A 132(3), 658–662 (2017)

    Article  ADS  Google Scholar 

  17. Eshghi, M., Mehraban, H., Ikhdair, S.M.: Approximate energies and thermal properties of a position-dependent mass charged particle under external magnetic fields. Chin. Phys. B 26(6), 060302 (2017)

    Article  ADS  Google Scholar 

  18. Fahad, H.M., Rehman, M.U., Fernandez, A.: On Laplace transforms with respect to functions and their applications to fractional differential equations. Math. Methods Appl. Sci. 46(7), 8304–8323 (2023)

    Article  ADS  MathSciNet  Google Scholar 

  19. Faniandari, S., Suparmi, A., Cari, C.: Study of thermomagnetic properties of the diatomic particle using hyperbolic function position dependent mass under the external hyperbolic magnetic and AB force. Mol. Phys. 120(12), e2083712 (2022)

    Article  ADS  Google Scholar 

  20. Faniandari, S., Suparmi, A., Cari, C., Harjana, H.: Study of thermomagnetic properties for non-relativistic particle with position dependent mass in the presence of topological defect and external magnetic field: theory and simulation. Int. J. Theor. Phys. 62(5), 109 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ghosh, U., Das, T., Sarkar, S.: Point canonical transformation and the time independent fractional Schrödinger equation with position dependent mass. Appl. Math. E-Notes 21, 687–704 (2021)

    MathSciNet  MATH  Google Scholar 

  22. Jamshir, N., Lari, B., Hassanabadi, H.: The time independent fractional Schrödinger equation with position-dependent mass. Phys. A: Stat. Mech. Appl. 565, 125616 (2021)

    Article  MATH  Google Scholar 

  23. Jarad, F., Abdeljawad, T.: A modified Laplace transform for certain generalized fractional operators. Results Nonlinear Anal. 1(2), 88–98 (2018)

    Google Scholar 

  24. Jarad, F., Abdeljawad, T.: Generalized fractional derivatives and Laplace transform. Discrete Contin. Dyn. Syst.-S 13(3), 709–722 (2020)

    MathSciNet  MATH  Google Scholar 

  25. Kahouli, O., Elloumi, M., Naifar, O., Alsaif, H., Kahouli, B., Bouteraa, Y.: Electrical circuits described by general fractional conformable derivative. Front. Energy Res. 10, 329 (2022)

    Article  Google Scholar 

  26. Katugampola, U.N.: A new fractional derivative with classical properties. arXiv preprint arXiv:1410.6535. (2014)

  27. Khalil, R., Al Horani, M., Yousef, A., Sababheh, M.: A new definition of fractional derivative. J. Comput. Appl. Math. 264, 65–70 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Khan, O., Khan, N., Baleanu, D., Nisar, K.S.: Computable solution of fractional kinetic equations using Mathieu-type series. Adv. Difference Equ. 2019(1), 1–13 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  29. Khordad, R., Vaseghi, B.: Magnetic properties in three electrons under Rashba spin-orbit interaction and magnetic field. Int. J. Quantum Chem. 119(20), e25994 (2019)

    Article  Google Scholar 

  30. Li, K., Guo, K., Jiang, X., Hu, M.: Effect of position-dependent effective mass on nonlinear optical properties in a quantum well. Optik 132, 375–381 (2017)

    Article  ADS  Google Scholar 

  31. Li, S., Zhang, S., Liu, R.: The existence of solution of diffusion equation with the general conformable derivative. J. Funct. Spaces 2020, 1–10 (2020)

    MathSciNet  Google Scholar 

  32. Meléndez-Vázquez, F., Fernández-Anaya, G., Hernández-Martínez, E.G.: General conformable estimators with finite-time stability. Adv. Differ. Equ. 2020(1), 1–29 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  33. Pourali, B., Lari, B., Hassanabadi, H.: An oscillator with position-dependent mass exposed to a thermal bosonic bath. Phys. A: Stat. Mech. Appl. 584, 126374 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  34. Rabei, E.M., Al-Jamel, A., Al-Masaeed, M.: The solution of conformable Laguerre differential equation using conformable Laplace transform. arXiv e-prints, arXiv-2112. (2021)

  35. Rampho, G.J., Ikot, A.N., Edet, C.O., Okorie, U.S.: Energy spectra and thermal properties of diatomic molecules in the presence of magnetic and AB fields with improved Kratzer potential. Mol. Phys. 119(5), e1821922 (2021)

    Article  ADS  Google Scholar 

  36. Silva, F.S., Moreira, D.M., Moret, M.A.: Conformable Laplace transform of fractional differential equations. Axioms 7(3), 55 (2018)

    Article  MATH  Google Scholar 

  37. Suparmi, A., Cari, C., Faniandari, S.: Eigen solutions of the Schrodinger equation with variable mass under the influence of the linear combination of modified woods-saxon and eckart potentials in toroidal coordinate. Mol. Phys. 118(24), e1781946 (2020)

    Article  ADS  Google Scholar 

  38. Xie, W., Pang, M., Wu, W.Z., Liu, C., Liu, C.: The general conformable fractional grey system model and its applications. arXiv preprint arXiv:2104.01114. (2021)

  39. Yu, Q., Guo, K., Hu, M., Zhang, Z., Zhang, Z., Liu, D.: Research on third-harmonic generation with position-dependent mass in a quantum well. JOSA B 35(6), 1408–1414 (2018)

    Article  ADS  Google Scholar 

  40. Zhao, D., Luo, M.: General conformable fractional derivative and its physical interpretation. Calcolo 54(3), 903–917 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  41. Zhao, D., Pan, X., Luo, M.: A new framework for multivariate general conformable fractional calculus and potential applications. Phys. A: Stat. Mech. Appl. 510, 271–280 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to Sebelas Maret University for supporting and funding this research during the 2022 academic year.

Author information

Authors and Affiliations

Authors

Contributions

Supriyadi Wibowo, A Soeparmi, Christiana Rini Indrati, and C Cari wrote the main manuscript text and all authors reviewed the manuscript

Corresponding author

Correspondence to Supriyadi Wibowo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wibowo, S., Suparmi, A., Indrati, C.R. et al. Approximate Solution of GCF PDM Schrödinger Equation for a Symmetrical Modified Pöschl–Teller Potential by GCF Laplace Transform Method. Int J Theor Phys 62, 222 (2023). https://doi.org/10.1007/s10773-023-05464-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-023-05464-z

Keywords

Subject classification codes

Navigation