Skip to main content
Log in

The Tsallis Relative 2-Entropy of Coherence under Mutually Unbiased Bases

  • Research
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The performance of quantum coherence under different bases is an important subject in quantum theory and quantum information science. This paper mainly focuses on the Tsallis relative 2-entropy of coherence of quantum states under mutually unbiased bases(MUBs) in two, three and four dimensional systems. For single-qubit mixed states, the sum under complete MUBs is less than \(\sqrt{6}\); for Gisin states and Bell-diagonal states in four dimensional system, the sum under a new set of “autotensor of mutually unbiased basis” (AMUBs) is less than nine. For three classes of X states in three-dimensional system, each Tsallis relative 2-entropy of coherence under nontrivial unbiased bases is found equal. Also the surfaces of the sum of the Tsallis relative 2-entropy of coherence under MUBs and AMUBs are described, respectively. Among them, a surface of a special class of X states in AMUBs is an ellipsoid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hillery, M.: Coherence as a resource in decision problems: the Deutsch-Jozsa algorithm and a variation. Phys. Rev. A. 93, 012111 (2016)

    Article  ADS  Google Scholar 

  2. Giovannetti, V., Lloyd, S., Maccone, L.: Advances in quantum metrology. Nat. Photon. 5, 222–229 (2011)

    Article  Google Scholar 

  3. Lostaglio, M., Jennings, D., Rudolph, T.: Description of quantum coherence in thermodynamic processes requires constraints beyond free energy. Nat. Commun. 6, 6383 (2015)

    Article  ADS  Google Scholar 

  4. Wang, Y.T., Tang, J.S., Wei, Z.Y., Yu, S., Ke, Z.J., Xu, X.Y., Li, C.F., Guo, G.C.: Directly measuring the degree of quantum coherence using interference fringes. Phys. Rev. Lett. 118, 020403 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  5. Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)

    Article  ADS  Google Scholar 

  6. Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115, 020403 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  7. Xiong, C.H., Kumar, A., Wu, J.D.: Family of coherence measures and duality between quantum coherence and path distinguishability. Phys. Rev. A 98, 032324 (2018)

    Article  ADS  Google Scholar 

  8. Yu, C.S.: Quantum coherence via skew information and its polygamy. Phys. Rev. A 95, 042337 (2017)

    Article  ADS  Google Scholar 

  9. Rastegin, A.E.: Quantum coherence quantifiers based on the Tsallis relative \(\alpha \)-entropies. Phys. Rev. A. 93, 032136 (2016)

    Article  ADS  Google Scholar 

  10. Wootters, W.K., Fields, B.D.: Optimal state-determination by mutually unbiased measurements. Ann. Phys. 191, 363–381 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  11. Cheng, S.M., Hall, M.J.W.: Complementarity relations for quantum coherence. Phys. Rev. A 92, 042101 (2015)

    Article  ADS  Google Scholar 

  12. Wang, Y.K., Ge, L.Z., Tao, Y.H.: Quantum coherence in mutually unbiased bases. Quantum. Inf. Proc. 18, 164 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Shen, M.Y., Sheng, Y.H., Tao, Y.H., Wang, Y.K.: Quantum coherence of qubit states with respect to mutually unbiased bases. Int. J. Theor. Phys. 59, 3908–3914 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  14. Zhang, H.J., Chen, B., Li, M., Fei, S.M., Long, G.L.: Estimation on geometric measure of quantum coherence. Commun. Theor. Phys. 67, 166–170 (2017)

    Article  ADS  MATH  Google Scholar 

  15. Song, Y.F., Ge, L.Z., Wang, Y.K., Tang, H., Tian, Y.: Relative entropies of coherence of X states in three-dimensional mutually unbiased bases. Laser. Phys. Lett. 19, 085201 (2022)

    Article  ADS  Google Scholar 

  16. Luo, S.L., Sun, Y.: Average versus maximal coherence. Phys. Lett. A 24, 383 (2019)

    MathSciNet  MATH  Google Scholar 

  17. Sheng, Y.H., Zhang, J., Tao, Y.H., Fei, S.M.: Applications of quantum coherence via skew information under mutually unbiased bases. Quantum. Inf. Proc. 20, 82 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Hu, M.L., Shen, S.Q., Fan, H.: Maximum coherence in the optimal basis. Phys. Rev. A 96, 052309 (2017)

    Article  ADS  Google Scholar 

  19. Hu, M.L., Wang, X.M., Fan, H.: Hierarchy of the nonlocal advantage of quantum coherence and Bell nonlocality. Phys. Rev. A 98, 032317 (2018)

    Article  ADS  Google Scholar 

  20. Hu, M.L., Fan, H.: Nonlocal advantage of quantum coherence in high-dimensional states. Phys. Rev. A 98, 022312 (2018)

    Article  ADS  Google Scholar 

  21. Yao, Y., Dong, G.H., Ge, L., Li, M., Sun, C.P.: Maximal coherence in a generic basis. Phys. Rev. A 94, 062339 (2016)

    Article  ADS  Google Scholar 

  22. Wu, Z.Q., Huang, H.J., Fei, S.M., Li-Jost, X.Q.: Geometry of skew information-based quantum coherence. Commun. Theor. Phys. 72, 105102 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  23. Sun, L., Li, J.P., Tao, Y.H.: Calculation of quantum coherence for two-dimensional quantum state. J. Yanbian Univ. Nat. Sci. 02, 107–111 (2022)

    Google Scholar 

  24. Gisin, N.: Hidden quantum nonlocality revealed by local filters. Phys. Lett. A 210, 151–156 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Horodecki, R., Horodecki, M.: Information-theoretic aspects of inseparability of mixed states. Phys. Rev. A 54, 1838 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Batle, J., Casas, M.: Nonlocality and entanglement in qubit systems. J. Phys. A. Math. Theor. 44, 445304 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Horodecki, R., Horodecki, M., Horodecki, P.: Einstein-Podolsky-Rosen paradox without entanglement. Phys. Rev. A 60, 4144 (1999)

  28. Werner, R.F.: Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277 (1989)

    Article  ADS  MATH  Google Scholar 

  29. Shao, L.H., Li, Y.: The Tsallis relative 2-entropy of coherence for Qubit system. Int. J. Theor. Phys. 56, 2944–2956 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Liu Sun and Yuanhong Tao wrote the main manuscript text. All of the authors reviewed the manuscript

Corresponding author

Correspondence to Yuan-Hong Tao.

Ethics declarations

Competing Interests

The authors declare no competing interests

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by NSFC under No. 11761073.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, L., Tao, YH. & Li, L.S. The Tsallis Relative 2-Entropy of Coherence under Mutually Unbiased Bases. Int J Theor Phys 62, 167 (2023). https://doi.org/10.1007/s10773-023-05408-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-023-05408-7

Keywords

Navigation