Skip to main content

Advertisement

Log in

Quantifying the Parameterized Monogamy Relation for Quantum Entanglement with Equation

  • Research
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

An extended concept of monogamy for the square of entanglement measure E is introduced in our work. Instead of the traditional CKW inequality, we build a monogamy connection based on the parameters \(\mu \), from which we obtain a monogamy relationship satisfied by the \(\alpha \)th (\(\alpha \ge 2\)) power of the entanglement measures. We use concrete instances to highlight the significance and advantages of these relation. We further show that monogamy relationship may be restored by considering multiple state copies for each nonadditive entanglement measurement that violates the CKW inequality. We also demonstrate how the relationship between tripartite states and multiparty systems might be strengthened.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Jafarpour, M., Hasanvand, F.K., et al.: Dynamics of entanglement and measurement-induced disturbance for a hybrid qubit-qutrit system interacting with a spin-chain environment: A mean field approach. Commun. Theor. Phys. 67(1), 31–36 (2017)

    Article  ADS  Google Scholar 

  2. Wang, M., Xu J., Yan, F., et al.: Entanglement concentration for polarization-spatial-time-bin hyperentangled Bell states. Europhys. Lett. 123(6) (2018)

  3. Huang H., et al.: Demonstration of essentiality of entanglement in a Deutsch-like quantum algorithm. Sci. China 61(06) (2018)

  4. Deng, F., Ren, B., Li, X.: Quantum hyperentanglement and its applications in quantum information processing. Sci. Bull. 62(1), 46 (2017)

    Article  Google Scholar 

  5. Yang, Y., Wen, Q.: Threshold multiparty quantum-information splitting via quantum channel encryption. Int. J. Quantum Inf. 7(06), 1249–1254 (2009)

    Article  MATH  Google Scholar 

  6. Bennett, C., Brassard, G.: An update on quantum cryptography. Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing. 84, 175–179 (1984)

    MATH  Google Scholar 

  7. Bennett, C., Brassard, G., Mermin, N.: Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 68(5), 557–559 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Terhal, B.: Is entanglement monogamous? IBM J. Res. Dev. 48(1), 71–78 (2004)

    Article  Google Scholar 

  9. Ou, Y.C., Fan, H.: Monogamy inequality in terms of negativity for three-qubit states. Phys. Rev. A 75, 062308 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  10. Kim, J.S., Sanders, B.C.: Monogamy of multi-qubit entanglement using Rényi entropy. J. Phys. A: Math. and Theor. 43, 445305 (2010)

    Article  MATH  Google Scholar 

  11. Osborne, T.J., Verstraete, F.: General monogamy inequality for bipartite qubit entanglement. Phys. Rev. Lett. 96, 220503 (2006)

    Article  ADS  Google Scholar 

  12. Kim, J.S., Das, A., Sanders, B.C.: Entanglement monogamy of multipartite higher-dimensional quantum systems using convexroof extended negativity. Phys. Rev. A 79, 012329 (2009)

    Article  ADS  Google Scholar 

  13. Ekert, A.K., Ekert, A.K.: Quantum cryptography based on bell’s theorem. Phys. Rev. Lett. 67(6), 661–663 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Pawlowski, M.: Security proof for cryptographic protocols based only on the monogamy of Bell’s inequality violations. Phys. Rev. A 82(3) (2012)

  15. Bae, J., Acin, A.: Asymptotic quantum cloning is state estimation. Phys. Rev. Lett. 97(3), 30402–30402 (2006)

    Article  ADS  Google Scholar 

  16. Ma, X.S., Dakic, B., Naylor, W., et al.: Quantum simulation of the wavefunction to probe frustrated Heisenberg spin systems. Nat. Publ. Group (5) (2011)

  17. Rao, K.R.K., Katiyar, H., Mahesh, T.S., et al.: Multipartite quantum correlations reveal frustration in a quantum Ising spin system. Phys. Rev. A 88(2), 22312–22312 (2013)

    Article  ADS  Google Scholar 

  18. Bennett, C.H.: In Proceedings of the FQXi 4th International Conference, Vieques Island, Puerto Rico (2014). http://fqxi.org/conference/talks/2014

  19. Lloyd, S., Preskill, J.: Unitarity of black hole evaporation in final-state projection models. J. High Energy Phys. 2014(8), 1–30 (2014)

    Article  Google Scholar 

  20. Yu, G., Hou, J.: Nullity of Measurement-induced Nonlocality. Arxiv Preprint Quant. 03(55) (2011)

  21. Fan, H., Ou, Y., Roychowdhury, V.: Entangled multi-qubit states without higher-tangle. Physics 07(07), 1578 (2007)

    Google Scholar 

  22. Kim, J., Sanders, B.: Monogamy of multi-qubit entanglement in terms of Rényi and tsallis entropies. 44, 751–763 (2010)

    Google Scholar 

  23. Kim, J.: Tsallis entropy and entanglement constraints in multi-qubit systems. Phys. Rev. A 81(6), 2036–2043 (2010)

    Article  Google Scholar 

  24. Lee, S., Kim, J., Sanders, B.: Distribution and dynamics of entanglement in high-dimensional quantum systems using convex-roof extended negativity. Phys. Lett. A 375(3), 411–414 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Lancien, C., Di Martino, S., Huber, M., et al.: Should entanglement measures be monogamous or faithful? Phys. Rev. Lett. 117(6), 060501 (2016)

    Article  ADS  Google Scholar 

  26. Jin, Z., Fei, S., Li-Jost, X., Qiao, C.: A new parameterized monogamy relation between entanglement and equality. Adv. Quantum Technol. 5, 2100148 (2022)

    Article  Google Scholar 

  27. Gour, G., Guo, Y.: Monogamy of entanglement without inequalities. Quantum 2, 81 (2018)

    Article  Google Scholar 

  28. Guo, Y., Zhang, L.: Multipartite entanglement measure and complete monogamy relation. Phys. Rev. A 101, 032301 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  29. Guo, Y.: When is a genuine multipartite entanglement measure monogamous? Entropy 24, 355 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  30. Durr, C., Santha, M.: A decision procedure for unitary linear quantum cellular automata. Proceedings of 37th Conference on Foundations of Computer Science. IEEE, 38-45 (1996)

  31. Rigolin, G., Oliveira, T., Oliveira, M.: Erratum: Operational classification and quantification of multipartite entangled states. Phys. Rev. A 75(5), 049904 (2007)

    Article  ADS  Google Scholar 

  32. Bai, Y., Xu, P., Xie, Z., et al.: Mode-locked biphoton generation by concurrent quasi-phase-matching. Phys. Rev. A 85(5) (2012)

  33. Uhlmann, A.: Fidelity and concurrence of conjugated states. Phys. Rev. A 62(3), 032307 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  34. Rungta, P., BužEk, V., Caves, C., et al.: Universal state inversion and concurrence in arbitrary dimensions. Phys. Rev. A 64(4), 502–508 (2001)

    Article  MathSciNet  Google Scholar 

  35. Albeverio, S., Fei, S.: A note on invariants and entanglements. J. Opt. B: Quantum Semiclassical Opt. 3(4):223-227(5) (2012)

  36. Coffman, V., Kundu, J., Wootters, W.: Distributed entanglement. Phys. Rev. A 61(5), 052306 (2000)

    Article  ADS  Google Scholar 

  37. Acin, A., Andrianov, A., Costa, L., et al.: Generalized Schmidt decomposition and classification of three-quantum-bit states. Phys. Rev. Lett. 85(7), 1560 (2000)

    Article  ADS  Google Scholar 

  38. Gao, X., Fei, S.: Estimation of concurrence for multipartite mixed states. Eur. Phys. J. Spec. Topics 159, 71 (2018)

    Article  ADS  Google Scholar 

  39. Farooq, A., et al.: Tightening monogamy and polygamy inequalities of multiqubit entanglement. Sci, Rep (2019)

    Book  Google Scholar 

  40. Yang, X., Ming-Xing Luo, M.X.: Unified monogamy relation of entanglement measures. Quantum Inf. Process. 20(3), 1–26 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  41. Jin, Z., Li, J., Li, T., et al.: Tighter monogamy relations in multiqubit systems. Phys. Rev. A 97(3), 032336 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  42. Karmakar, S., Sen, A., Bhar, A., et al.: Strong monogamy conjecture in a four-qubit system. Phys. Rev. A 93(1), 012327 (2016)

    Article  ADS  Google Scholar 

  43. Palazuelos, C.: Superactivation of quantum nonlocality. Phys. Rev. Lett. 109(19), 190401 (2012)

    Article  ADS  Google Scholar 

  44. Jin, Z., Fei, S.: Superactivation of monogamy relations for nonadditive quantum correlation measures. Phys. Rev. A 99(3), 032343 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (11961073).

Author information

Authors and Affiliations

Authors

Contributions

Writing-original draft, Dongping Xuan, Xiaohui Hu and Hua Nan; Writing-review and editing, Hua Nan, Piao Guangri and Zhixiang Jin. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Hua Nan.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xuan, D., Hu, X., Jin, Z. et al. Quantifying the Parameterized Monogamy Relation for Quantum Entanglement with Equation. Int J Theor Phys 62, 131 (2023). https://doi.org/10.1007/s10773-023-05386-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-023-05386-w

Keywords

Navigation