Skip to main content
Log in

Security Analysis and Improvement of a Blind Semi-quantum Signature

  • RESEARCH
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Recently, Xia et al. proposed a semi-quantum blind signature protocol based on five-particle GHZ state. Their protocol can reduce the computation burden of the communicants. However, their protocol is not secure against forgery attack. We prove that the message sender and the signature receiver may conspire to forge the signer’s signature, because they master all the private keys of the signer. Then, both the signer and the signature receiver can deny a valid signature. Then, based on the three-particle GHZ state, an improved semi-quantum blind signature protocol is proposed. In the improved protocol, the signer shares the signing key with the trusted arbitrator. Even the message sender and the signature receiver conspire, it is infeasible for them to forge the signer’s signature. The improved scheme is secure against the disavowal attack. It has the better efficiency and practicability than the old version as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Diffie, W., Hellman, M.: New direction in cryptography. IEEE Trans. Inf. Theory 22(6), 644–654 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  2. Jian, H., Zhang, J., Bai, W.: A new signature scheme based on a multitude of mathematical problems. Electron. Sci. Technol. 24(4), 15–16+42 (2011)

  3. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press, UK, Cambridge (2000)

    MATH  Google Scholar 

  5. Wen, X., Niu, X., Ji, L., et al.: A weak blind signature scheme based on quantum cryptography. Opt. Commun. 282(4), 666–669 (2009)

    Article  ADS  Google Scholar 

  6. Chaum D.: Blind signatures for untraceable payments. In: Chaum, D., Rivest, R.L., Sherman, A.T. (eds), Advances in Cryptology, pp. 199–203. Springer, Boston (1983)

  7. Su, Q., Huang, Z., Wen, Q.Y., et al.: Quantum blind signature based on two-state vector formalism. Opt. Commun. 283(21), 4408–4410 (2010)

    Article  Google Scholar 

  8. Yang, C.W., Hwang, T., Luo, Y.P.: Enhancement on “quantum blind signature based on two-state vector formalism.” Quantum Inf. Process. 12(1), 109–117 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Wang, M.M., Chen, X.B., Yang, Y.X.: A blind quantum signature protocol using the GHZ states. Sci. China-Phys. Mech. Astron. 9, 32–37 (2013)

    Google Scholar 

  10. Siavash, K., Ali, Z.: A sessional blind signature based on quantum cryptography. Quantum Inf. Process. 13(1), 121–130 (2014)

    Article  MathSciNet  Google Scholar 

  11. Tian, Y., Chen, H., Ji, S.F., et al.: A broadcasting multiple blind signature scheme based on quantum teleportation. Opt. Quant. Electron. 46(6), 769–777 (2014)

    Article  Google Scholar 

  12. Zhang, W., Qiu, D., Zou, X., Mateus, P.: Analyses and improvement of a broadcasting multiple blind signature scheme based on quantum GHZ entanglement. Quantum Inf. Process. 16(6), 150 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Li, W., Shi, J., Shi, R., et al.: Blind quantum signature with controlled four-particle cluster states. Int. J. Theor. Phys. 56(8), 2579–2587 (2017)

    Article  MATH  Google Scholar 

  14. Luo, Y.P., Tsai, S.L., Hwang, T., et al.: On “A new quantum blind signature with unlinkability.” Quantum Inf. Process. 16(4), 87 (2017)

    Article  ADS  MATH  Google Scholar 

  15. Guo, X., Zhang, J.Z., Xie, S.C.: A trusted third-party e-payment protocol based on quantum blind signature without entanglement. Int. J. Theor. Phys. 57(9), 2657–2664 (2018)

    Article  MATH  Google Scholar 

  16. Yang, Y.Y., Xie, S.C., Zhang, J.Z., et al.: An improved quantum proxy blind signature scheme based on genuine seven-qubit entangled state. Int. J. Theor. Phys. 56(7), 2293–2302 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Zhang, J.L., Zhang, J.Z., Xie, S.C., et al.: Improvement of a quantum proxy blind signature scheme. Int. J. Theor. Phys. 57(6), 1612–1621 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Liu, G., Ma, W., Cao, H., et al.: A novel quantum group proxy blind signature scheme based on five-qubit entangled state. Int. J. Theor. Phys. 58(6), 1999–2008 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  19. Liang, X., Wu, Y., Zhang, Y., et al.: Quantum multi-proxy blind signature scheme based on four-qubit cluster states. Int. J. Theor. Phys. 58(1), 31–39 (2019)

    Article  MATH  Google Scholar 

  20. Chen, J.J., You, F.C., Li, Z.Z.: Quantum multi-proxy blind signature based on cluster state. Quantum Inf. Process. 21(3), 104 (2022)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Boyer, M., Kenigsberg, D., Mor, T.: Quantum key distribution with classical bob. Phys. Rev. Lett. 99, 098901 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhao, X.Q., Chen, H.Y., Wang, Y.Q., et al.: Semi-quantum bi-signature scheme based on W states. Int. J. Theor. Phys. 58(10), 3239–3251 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  23. Yang, C.W., Lin, J., Tsa, C.W., et al.: Cryptanalysis of a semi-quantum bi-signature scheme based on W states. Entropy 24(10), 1408 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  24. Chen, L.Y., Liao, Q., Tan, R.C., et al.: Offline arbitrated semi-quantum signature scheme with four-particle cluster state. Int. J. Theor. Phys. 59(12), 3685–3695 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  25. Xia, C.Y., Li, H., Hu, J.: Semi-quantum digital signature protocol based on Einstein-Podolsky-Rosen steering. J. Phys. A Math. Theor. 55(32), 325302 (2022)

  26. Schrödinger, E., Born, M.: Discussion of probability relations between separated systems. Math. Proc. Camb. Phil. Soc. 31, 555 (1935)

    Article  ADS  MATH  Google Scholar 

  27. Wiseman, H.M., Jones, S.J., Doherty, A.C.: Steering, entanglement, nonlocality, and the Einstein-Podolsky-Rosen paradox. Phys. Rev. Lett. 98, 140402 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Xu, Y., Cheng, K., Liu, T., et al.: A lightweight semi-quantum e-payment protocol based on blockchain. Int. J. Theor. Phys. 60(11–12), 4196–4209 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  29. Xia, C., Li, H., Hu, J.: A semi-quantum blind signature protocol based on five-particle GHZ state. Eur. Phys. J. Plus 136(6), 01605 (2021)

    Article  Google Scholar 

  30. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Theor. Comput. Sci. 560, 7–11 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zou, X., Qiu, D., Li, L., et al.: Semiquantum-key distribution using less than four quantum states. Phys. Rev. A 79(5), 052312 (2009)

    Article  ADS  Google Scholar 

  32. Boyer, M., Gelles, R., Kenigsberg, D., et al.: Semiquantum key distribution. Phys. Rev. A 79(3), 032341 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Boyer, M., Katz, M., Liss, R., et al.: Experimentally feasible protocol for semiquantum key distribution. Phys. Rev. A 96(6), 062335 (2017)

    Article  ADS  Google Scholar 

  34. Boykin, P.O., Roychowdhury, V.: Optimal encryption of quantum bits. Phys. Rev. A 67(4), 645–648 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No.62272090) and the Key Scientific Research Project of Colleges and Universities in Henan Province (Grant No.22A413010).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. The scheme was designed by Jie cao and Chaoyang Li, the security of the scheme was analyzed by Xiangjun Xin and Fagen Li. The first draft of the manuscript was written by Jie Cao and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xiangjun Xin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflicts of Interest

All the authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, J., Xin, X., Li, C. et al. Security Analysis and Improvement of a Blind Semi-quantum Signature. Int J Theor Phys 62, 87 (2023). https://doi.org/10.1007/s10773-023-05350-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-023-05350-8

Keywords

Navigation