Skip to main content
Log in

Simulating a Quantum Composite System by Coupled Classical Oscillators

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

It is known that the adiabatic evolution and Berry phase of a quantum can be mapped into the classical dynamics and Hannay’s angle of coupled oscillators in a strictly mathematical way. In this work, we show that a quantum composite system consisting of two spin-1/2 can also be mapped into coupled two sets of classical oscillators by using this quantum-classical mapping. The evolution and geometric phase for the quantum composite system have been mapped into the classical dynamics and Hannay’s angle for the oscillators. The quantum entanglement has also been mapped into the correlation between the two sets of coupled oscillators. We also provide a way to study the classical geometric angle by mapping the geometric phases for the quantum subsystems into classical ones. Our results can provide a new way to simulate the quantum composite system and study the classical composite system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wilczek, F., Zee, A.: Appearance of gauge structure in simple dynamical systems. Phys. Rev. Lett. 52, 2111–2114 (1984). https://doi.org/10.1103/PhysRevLett.52.2111

    Article  ADS  MathSciNet  Google Scholar 

  2. Aharonov, Y., Anandan, J.: Phase change during a cyclic quantum evolution. Phys. Rev. Lett. 58, 1593–1596 (1987). https://doi.org/10.1103/PhysRevLett.58.1593

    Article  ADS  MathSciNet  Google Scholar 

  3. Sjöqvist, E., Pati, A.K., Ekert, A., Anandan, J.S., Ericsson, M., Oi, D.K.L., Vedral, V.: Geometric phases for mixed states in interferometry. Phys. Rev. Lett. 85, 2845–2849 (2000). https://doi.org/10.1103/PhysRevLett.85.2845

    Article  ADS  Google Scholar 

  4. Yi, X., Wang, L., Zheng, T.: Berry phase in a composite system. Phys. Rev. Lett. 92(15), 1–4 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Tong, D.M., Sjöqvist, E., Kwek, L.C., Oh, C.H.: Kinematic approach to the mixed state geometric phase in nonunitary evolution. Phys. Rev. Lett. 93, 080405 (2004). https://doi.org/10.1103/PhysRevLett.93.080405

    Article  ADS  Google Scholar 

  6. Tomita, A., Chiao, R.Y.: Observation of berry’s topological phase by use of an optical fiber. Phys. Rev. Lett. 57, 937–940 (1986). https://doi.org/10.1103/PhysRevLett.57.937

    Article  ADS  Google Scholar 

  7. Laughlin, R.: The relationship between high-temperature superconductivity and the fractional quantum hall effect. Science 242(4878), 525–533 (1988)

    Article  ADS  Google Scholar 

  8. Sjöqvist, E., Hedström, M.: Noncyclic geometric phase, coherent states, and the time-dependent variational principle: Application to coupled electron-nuclear dynamics. Phys. Rev. A 56, 3417–3424 (1997). https://doi.org/10.1103/PhysRevA.56.3417

    Article  ADS  Google Scholar 

  9. Jain, S.R., Pati, A.K.: Adiabatic geometric phases and response functions. Phys. Rev. Lett. 80, 650–653 (1998). https://doi.org/10.1103/PhysRevLett.80.650

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Garcia de Polavieja, G.: Noncyclic geometric phase shift for quantal revivals. Phys. Rev. Lett. 81, 1–5 (1998). https://doi.org/10.1103/PhysRevLett.81.1

    Article  ADS  Google Scholar 

  11. Bruno, P., Dugaev, V.K., Taillefumier, M.: Topological hall effect and berry phase in magnetic nanostructures. Phys. Rev. Lett. 93, 096806 (2004). https://doi.org/10.1103/PhysRevLett.93.096806

    Article  ADS  Google Scholar 

  12. Shen, S.Q.: Spin hall effect and berry phase in two-dimensional electron gas. Phys. Rev. B 70, 081311 (2004). https://doi.org/10.1103/PhysRevB.70.081311

    Article  ADS  Google Scholar 

  13. Zhang, Y., Tan, Y.W., Stormer, H.L., Kim, P.: Experimental observation of the quantum hall effect and berry’s phase in graphene. Nature 438(7065), 201–204 (2005). https://doi.org/10.1038/nature04235

    Article  ADS  Google Scholar 

  14. Leuenberger, M.N., Mucciolo, E.R.: Berry-phase oscillations of the Kondo effect in single-molecule magnets. Phys. Rev. Lett. 97, 126601 (2006). https://doi.org/10.1103/PhysRevLett.97.126601

    Article  ADS  Google Scholar 

  15. González, G., Leuenberger, M.N.: Berry-phase blockade in single-molecule magnets. Phys. Rev. Lett. 98, 256804 (2007). https://doi.org/10.1103/PhysRevLett.98.256804

    Article  ADS  Google Scholar 

  16. Read, N.: Non-Abelian adiabatic statistics and Hall viscosity in quantum Hall states and px + ipy paired superfluids. Phys. Rev. B 79, 045308 (2009). https://doi.org/10.1103/PhysRevB.79.045308

    Article  ADS  Google Scholar 

  17. Berry, M.V.: Transitionless quantum driving. J. Phys. A Math. 42 (36), 365303 (2009)

    MathSciNet  MATH  Google Scholar 

  18. Raczyński, A., Zaremba, J., Zielińska-Raczyńska, S.: Berry phase in controlled light propagation and storage. Phys. Rev. A 97, 043861 (2018). https://doi.org/10.1103/PhysRevA.97.043861

    Article  ADS  Google Scholar 

  19. Zhang, X.Y., Teng, J.H., Yi, X.X.: Berry phase in coupled two-level systems. Mod. Phys. Lett. B 27(12), 1350088 (2013). https://doi.org/10.1142/S0217984913500887

    Article  ADS  Google Scholar 

  20. Sjöqvist, E., Rahaman, R., Basu, U., Basu, B.: Berry phase and fidelity susceptibility of the three-qubit Lipkin-Meshkov-Glick ground state. J. Phys. A 43(35), 354026 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Heslot, A.: Quantum mechanics as a classical theory. Phys. Rev. D 31, 1341–1348 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  22. Weinberg, S.: Testing quantum mechanics. Ann. Phys. 194(2), 336–386 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  23. Wu, B., Liu, J., Niu, Q.: Geometric phase for adiabatic evolutions of general quantum states. Phys. Rev. Lett. 94, 140402 (2005)

    Article  ADS  Google Scholar 

  24. Zhang, Q., Wu, B.: General approach to quantum-classical hybrid systems and geometric forces. Phys. Rev. Lett. 97, 190401 (2006)

    Article  ADS  Google Scholar 

  25. Stone, M.: Born-Oppenheimer approximation and the origin of Wess-Zumino terms: Some quantum-mechanical examples. Phys. Rev. D 33, 1191–1194 (1986)

    Article  ADS  Google Scholar 

  26. Gozzi, E., Thacker, W.D.: Classical adiabatic holonomy and its canonical structure. Phys. Rev. D 35, 2398–2406 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  27. Liu, H.D., Wu, S.L., Yi, X.X.: Berry phase and Hannay’s angle in a quantum-classical hybrid system. Phys. Rev. A 83, 062101 (2011)

    Article  ADS  Google Scholar 

  28. Liu, H., Yi, X., Fu, L.: Berry phase and Hannay’s angle in the Born–Oppenheimer hybrid systems. Ann. Phys. (N. Y.) 339, 1–10 (2013). https://doi.org/10.1016/j.aop.2013.08.006, http://linkinghub.elsevier.com/retrieve/pii/S0003491613001759

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Briggs, J.S., Eisfeld, A.: Equivalence of quantum and classical coherence in electronic energy transfer. Phys. Rev. E 83, 051911 (2011). https://doi.org/10.1103/PhysRevE.83.051911

    Article  ADS  Google Scholar 

  30. Briggs, J.S., Eisfeld, A.: Coherent quantum states from classical oscillator amplitudes. Phys. Rev. A 85, 052111 (2012). https://doi.org/10.1103/PhysRevA.85.052111

    Article  ADS  Google Scholar 

  31. Briggs, J.S., Eisfeld, A.: Quantum dynamics simulation with classical oscillators. Phys. Rev. A 88, 062104 (2013). https://doi.org/10.1103/PhysRevA.88.062104

    Article  ADS  Google Scholar 

  32. Briggs, J.S.: Equivalent emergence of time dependence in classical and quantum mechanics. Phys. Rev. A 91, 052119 (2015). https://doi.org/10.1103/PhysRevA.91.052119

    Article  ADS  Google Scholar 

  33. Briggs, J.S., Feagin, J.M.: Autonomous quantum to classical transitions and the generalized imaging theorem. New J. Phys. 18(3), 033028 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Liu, Y., Zhang, Y.N., Liu, H.D., Sun, H.Y.: Simulation of quantum shortcuts to adiabaticity by classical oscillators. Front. Phys. 10, 1090973 (2023). https://doi.org/10.3389/fphy.2022.1090973

    Article  Google Scholar 

  35. Zhang, Y.N., Shen, J., Liu, H.D., Yi, X.X.: Non-Abelian quantum adiabatic dynamics and phase simulation with classical resonant oscillators. Phys. Rev. A 102(3), 032213 (2020). https://doi.org/10.1103/PhysRevA.102.032213

    Article  ADS  MathSciNet  Google Scholar 

  36. Zhang, Y.N., Liu, Y., Liu, H.D.: Non-Abelian shortcuts to adiabaticity simulated by classical resonant oscillators. Int. J. Theor. Phys. 60(3), 1184–1193 (2021). https://doi.org/10.1007/s10773-021-04744-w

    Article  MathSciNet  MATH  Google Scholar 

  37. Berry, M.V.: Classical adiabatic angles and quantal adiabatic phase. J. Phys. A 18(1), 15 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Berry, M.V.: Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. London. Ser. A 392(1802), 45–57 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Yang, J., Zhang, Y.: Adiabatic evolution and shortcut in a Pseudo-Hermitian composite system. Int. J. Theor. Phys. 59(11), 3593–3599 (2020). https://doi.org/10.1007/s10773-020-04619-6

    Article  MathSciNet  MATH  Google Scholar 

  40. Yang, J., Zhang, Y.: Adiabatic shortcut and quantum correlation in composite system. Int. J. Theor. Phys. 59, 181–186 (2020). https://doi.org/10.1007/s10773-019-04309-y

    Article  MathSciNet  MATH  Google Scholar 

  41. Yang, J., Zhang, Y.: Majorana representation for a composite system. Int. J. Theor. Phys. 60(10), 3927–3933 (2021). https://doi.org/10.1007/s10773-021-04951-5

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (11747155), Science and Technology Foundation of Education Department of Jilin Province of China (JJKH20181162KJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Yang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J. Simulating a Quantum Composite System by Coupled Classical Oscillators. Int J Theor Phys 62, 45 (2023). https://doi.org/10.1007/s10773-023-05311-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-023-05311-1

Keywords

Navigation