Skip to main content
Log in

Entanglement of Hybrid State in Noninertial Frame

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We study quantum entanglement of hybrid state composed of coherent state and fermion in noninertial frame. Quantum entanglement increases from zero to the asymptotic value with the increase of the amplitude of the coherent state. The asymptotic value is equal to the value of quantum entanglement between two fermions in noninertial frame. This means that the larger amplitude is good for quantum entanglement against the Unruh effect. We find that the entanglement of the hybrid state cannot decrease to zero as the acceleration approaches infinity, while the bosonic entanglement vanishes completely in the infinite acceleration limit. Therefore, the residual entanglement of the hybrid state can be used to process relativistic quantum information tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data included in this study are available upon request by contact with the corresponding authors Shu-Min Wu and Xiao-Li Huang.]

References

  1. Bouwmeester, D., Zeilinger, A. In: Bouwmeester, D., Ekert, A., Zeilinger, A. (eds.) : The Physics of Quantum Information. Springer, Berlin (2000)

  2. Plenio, M.B., Vedral, V.: . Contemp. Phys. 39, 431 (1998)

    Article  ADS  Google Scholar 

  3. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: . Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  Google Scholar 

  4. Gigena, N., Tullio, M.D., Rossignoli, R.: . Phys. Rev. A 102, 042410 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  5. Barrett, J.: . Phys. Rev. A 65, 042302 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  6. Adesso, G., Fuentes-Schuller, I., Ericsson, M.: . Phys. Rev. A 76, 062112 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  7. Tian, Z., Du, J.: . Eur. Phys. J. C 79, 994 (2019)

    Article  ADS  Google Scholar 

  8. Tian, Z., Jing, J., Dragan, A.: . Phys. Rev. D 95, 125003 (2017)

    Article  ADS  Google Scholar 

  9. Bruschi, D.E., Louko, J., Martín-Martínez, E., Dragan, A., Fuentes, I.: . Phys. Rev. A 82, 042332 (2010)

    Article  ADS  Google Scholar 

  10. Martín-Martínez, E., Garay, L.J., León, J.: . Phys. Rev. D 82, 064006 (2010)

    Article  ADS  Google Scholar 

  11. Esfahani, B.N., Shamirzaie, M., Soltani, M.: . Phys. Rev. D 84, 025024 (2011)

    Article  ADS  Google Scholar 

  12. Bruschi, D.E., Dragan, A., Fuentes, I., Louko, J.: . Phys. Rev. D 86, 025026 (2012)

    Article  ADS  Google Scholar 

  13. Hwang, M.R., Park, D., Jung, E.: . Phys. Rev. A 83, 012111 (2011)

    Article  ADS  Google Scholar 

  14. Wu, S.M., Zeng, H.S.: . Class. Quantum Grav. 37, 115003 (2020)

    Article  ADS  Google Scholar 

  15. Wu, S.M., Zeng, H.S., Cao, H.M.: . Class Quantum Grav. 38, 185007 (2021)

    Article  ADS  Google Scholar 

  16. Wang, J., Pan, Q., Jing, J.: . Phys. Lett. B 692, 202 (2010)

    Article  ADS  Google Scholar 

  17. Wang, J., Jing, J.: . Phys. Rev. A 83, 022314 (2011)

    Article  ADS  Google Scholar 

  18. Moradi, S.: . Phys. Rev. A 79, 064301 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  19. Martín-Martínez, E., Fuentes, I.: . Phys. Rev. A 83, 052306 (2011)

    Article  ADS  Google Scholar 

  20. Chang, J., Kwon, Y.: . Phys. Rev. A 85, 032302 (2012)

    Article  ADS  Google Scholar 

  21. He, J., Xu, S., Ye, L.: . Phys. Lett. B 756, 278 (2016)

    Article  ADS  Google Scholar 

  22. Qiang, W.C., Sun, G.H., Dong, Q., Dong, S.H.: . Phys. Rev. A 98, 022320 (2018)

    Article  ADS  Google Scholar 

  23. Xu, S., Song, X.K., Shi, J.D., Ye, L.: . Phys. Rev. D 89, 065022 (2014)

    Article  ADS  Google Scholar 

  24. Torres-Arenasa, A.J., Dong, Q., Sun, G.H., Qiang, W.C., Dong, S.H.: . Phys. Lett. B 789, 93 (2019)

    Article  ADS  Google Scholar 

  25. Wu, S.M., Zeng, H.S.: . Eur. Phys. J. C 82, 4 (2022)

    Article  ADS  Google Scholar 

  26. Bombelli, L., Koul, R.K., Lee, J., Sorkin, R.D.: . Phys. Rev. D 34, 373 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  27. Hawking, S.W.: . Commun. Math. Phys. 43, 199 (1975)

    Article  ADS  Google Scholar 

  28. Hawking, S.W.: . Phys. Rev. D 14, 2460 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  29. Terashima, H.: . ibid 61, 104016 (2000)

    Google Scholar 

  30. Unruh, W.G.: . Phys. Rev. D 14, 870 (1976)

    Article  ADS  Google Scholar 

  31. Fuentes-Schuller, I., Mann, R.B.: . Phys. Rev. Lett. 95, 120404 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  32. Alsing, P.M., Fuentes-Schuller, I., Mann, R.B., Tessier, T.E.: . Phys. Rev. A 74, 032326 (2006)

    Article  ADS  Google Scholar 

  33. Li, Y., Pan, Y., Zhang, B., Phys, J.: . Conf. Ser. 1707, 012004 (2020)

    Article  Google Scholar 

  34. Wu, S.M., Fan, X.W., Huang, X.L., Zeng, H.S.: . Europhys. Lett. 141, 18001 (2023)

    Article  ADS  Google Scholar 

  35. Wen, C., Wang, J., Jing, J.: . Eur. Phys. J. C 80, 78 (2020)

    Article  ADS  Google Scholar 

  36. Hu, B., Wen, C., Wang, J., Jing, J.: . Eur. Phys. J. C 81, 925 (2021)

    Article  ADS  Google Scholar 

  37. Wu, S.M., Zeng, H.S.: . Eur. Phys. J. C 82, 716 (2022)

    Article  ADS  Google Scholar 

  38. Chou, C.W., Hume, D.B., Rosenband, T., Wine-land, D.J.: . Science 329, 1630 (2010)

    Article  ADS  Google Scholar 

  39. Wang, J.Y., et al.: . Nat. Photonics 7, 387 (2013)

    Article  ADS  Google Scholar 

  40. Bruschi, D.E., Ralph, T.C., Fuentes, I., Jennewein, T., Razavi, M.: . Phys. Rev. D 90, 045041 (2014)

    Article  ADS  Google Scholar 

  41. Bruschi, D.E., Datta, A., Ursin, R., Ralph, T.C., Fuentes, I.: . Phys. Rev. D 90, 124001 (2014)

    Article  ADS  Google Scholar 

  42. Jeong, H.: . Phys. Rev. A 72, 034305 (2005)

    Article  ADS  Google Scholar 

  43. Jeong, H., et al.: . Nat. Photonics 8, 564 (2014)

    Article  ADS  Google Scholar 

  44. Ahmadi, F., Miry, S.R.: . Quantum Inf. Process. 20, 301 (2021)

    Article  ADS  Google Scholar 

  45. Pakniat, R., Tavassoly, M.K., Zandi, M.H.: . Opt. Commun. 382, 381 (2017)

    Article  ADS  Google Scholar 

  46. Rigas, J., Gühne, O., Lütkenhaus, N.: . Phys. Rev. A 73, 012341 (2006)

    Article  ADS  Google Scholar 

  47. Lee, S.W., Jeong, H.: . Phys. Rev. A 87, 022326 (2013)

    Article  ADS  Google Scholar 

  48. Vidal, G., Werner, R.F.: . Phys. Rev. A 65, 032314 (2002)

    Article  ADS  Google Scholar 

  49. Ingarden, R.S., Kossakowski, A., Ohya, M.: Information Dynamics and Open Systems-Classical and Quantum Approach. Kluwer Academic, Dordrecht (1997)

    MATH  Google Scholar 

  50. Dong, Q., Torres-Arenas, A.J., Sun, G.H., Dong, S.H.: . Front. Phys. 15, 11602 (2020)

    Article  ADS  Google Scholar 

  51. Barnett, S.M., Radmore, P.M.: Methods in Theoretical Quantum Optics, pp 67–80. Oxford University Press, New York (1997)

    MATH  Google Scholar 

  52. Harikrishnan, S., Jambulingam, S., Rohde, P.P., Radhakrishnan, C.: . Phys. Rev. A 105, 052403 (2022)

    Article  ADS  Google Scholar 

  53. Glauber, J.R.: . Phys. Rev. 131, 2766 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  54. Sudarshan, E.C.G.: . Phys. Rev. Lett. 10, 277 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  55. Klauder, J.R.: . J. Math. Phys. 4, 1055 (1963)

    Article  ADS  Google Scholar 

  56. Hu, M.L., Hu, X., Wang, J., Zhang, Y.R., Fan, H.: . Phys. Rep. 762, 1 (2018)

    ADS  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant Nos. 12205133), LJKQZ20222315 and 2021BSL013.

Author information

Authors and Affiliations

Authors

Contributions

All the authors were involved in the preparation of the manuscript. All the authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Shu-Min Wu or Xiao-Li Huang.

Ethics declarations

Conflict of Interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, SM., Liu, DD., Wang, CX. et al. Entanglement of Hybrid State in Noninertial Frame. Int J Theor Phys 62, 39 (2023). https://doi.org/10.1007/s10773-023-05297-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-023-05297-w

Navigation