Skip to main content
Log in

Lorentz Symmetry Breaking and Entropy Correction of Kerr-Newman-Ads Black Hole

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper, in the curved space-time of Kerr-Newman-Ads black hole, the scalar particle dynamics equation is modified in consideration of Lorentz symmetry breaking. On this basis, the quantum tunneling radiation of the black hole is precisely modified, and the modified expressions of Hawking temperature and entropy of the black hole are obtained; In order to further obtain the correction effect of the Planck scale, this paper considers a more accurate correction method beyond the semi-classical theory, and further obtains a new expression of the black hole temperature and entropy. The physical significance of a series of new results obtained is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Magueijo, J., Smolin, L.: Lorentz invariance with an invariant energy scale. Phys. Rev. Lett 6, 118 (2004). https://doi.org/10.1103/PhysRevLett.88.190403

    Google Scholar 

  2. Jacobson, T., Liberati, I., Crudgington, S., Marringly, D.: A strong astrophysical constraint on the violation of special relativity by quantum gravity. Nature 424, 1019 (2003). https://doi.org/10.1038/nature01882

    Article  ADS  Google Scholar 

  3. Kruglov, S.I.: Modified wave equation for spinless particles and its solutions in an external magnetic field. Mod. Phys. Lett. A 28, 1350014 (2013). https://doi.org/10.1142/S0217732313500144

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Ellis, J.R., Mavromatos, N.E., Sakharov, A.S.: Synchrotron radiation from the Crab Nebula discriminates between models of spaceCtime foam. Astropart. Phys 20, 669 (2004). https://doi.org/10.1016/j.astropartphys.2003.12.001

    Article  ADS  Google Scholar 

  5. Giovanni, A.C.: Doubly-special relativity: first results and key open problems. Int. J. Mod. Phys. D 11, 1643 (2002). https://doi.org/10.1142/S021827180200302X

    Article  MathSciNet  MATH  Google Scholar 

  6. Barausse, E., Sotiriou, T.P.: Black holes in Lorentz-violating gravity theories. Class. Quantum Grav 30, 244010 (2013). https://doi.org/10.1088/0264-9381/30/24/244010

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Ellis, J.R., Mavromatos, N.E.: String theory modifies quantum mechanics. Phys. Lett. B 293, 37 (1992). https://doi.org/10.1016/0370-2693(92)91478-R

    Article  ADS  MathSciNet  Google Scholar 

  8. Magueijo, J., Smolin, L.: Generalized Lorentz invariance with an invariant energy scale. Phys. Rew. D 67, 044017 (2003). https://doi.org/10.1103/PhysRevD.67.044017

    Article  ADS  MathSciNet  Google Scholar 

  9. Joyce, A., Jain, B., Khoury, J., Trodden, M.: Beyond the cosmological standard model. Phys. Lett. B 568, 1 (2015). https://doi.org/10.1016/j.physrep.2014.12.002

    MathSciNet  Google Scholar 

  10. Lin, K., Yang, S.Z.: A simpler method for researching fermions tunneling from black holes. Chinese Phys. B 20, 110403 (2011). https://doi.org/10.1088/1674-1056/20/11/110403

    Article  ADS  Google Scholar 

  11. Yang, S.Z., Lin, K., Li, J., Jiang, Q.Q.: Lorentz invariance violation and modified hawking fermions tunneling radiation. Adv. High Energy Phys. https://doi.org/10.1155/2016/7058764 (2016)

  12. Ran, L., Yu, Z.H., Yang, S.Z.: Modification method of NUT-kerr-newman-de Sitter black hole entropy by Lorentz symmetry breaking and beyond the semi-classical approximation. EPL 139, 53001 (2022). https://doi.org/10.1209/0295-5075/ac8610

    Google Scholar 

  13. Ran, L., Ding, Q.T., Yang, S.Z.: Modified Hawking temperature and entropy of general stationary black holes by Lorentz invariance violation. EPL 138, 60018 (2022). https://doi.org/10.1209/0295-5075/ac71c2

    Google Scholar 

  14. Mohsen, K., Gaetano, L., Ahmad, S.: Constraining the Lorentz-Violating Bumblebee Vector Field with Big Bang Nucleosynthesis and Gravitational Baryogenesis. arXiv:2211.07934 [gr-qc] (2022)

  15. Khodadi, M., Saridakis, E.N.: Einstein-Aether Gravity in the light of Event Horizon Telescope Observations of M87. Phys. Dark Univ. 32, 100835 (2021). arXiv:2012.05186[gr-qc]

    Article  Google Scholar 

  16. Khodadi, M.: Black hole superradiance in the presence of lorentz symmetry violation. Phys. Rev. D 103, 064051 (2021). arXiv:2103.03611[gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  17. Kostelecky, V.A., Mewes, M.: Signals for Lorentz violation in electrodynamics. Phys. Rev. D 66, 056005 (2002). https://doi.org/10.1103/PhysRevD.66.056005

    Article  ADS  Google Scholar 

  18. Colladay, D., Kostelecky, V.A.: Lorentz-violating extension of the standard model. Phys. Rev. D 58, 116002 (1998). https://doi.org/10.1103/PhysRevD.58.116002

    Article  ADS  Google Scholar 

  19. Gomes, M., Nascimento, J.R., Petrov, A.Y., Da Silva, A.J.: Aetherlike Lorentz-breaking actions. Phys. Rev. D 81, 045018 (2010). https://doi.org/10.1103/PhysRevD.81.045018

    Article  ADS  Google Scholar 

  20. Lin, K, Yang, S.Z.: Hawking radiation from NUT Kerr Newman Kusuya black hole via effective action and covariant anomalies. Int. J. Theor. Phys 49, 927 (2010). https://doi.org/10.1007/s10773-010-0255-z

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Zhang, J., Liu, M.Q., Liu, Z., Sha, B., Tan, X., Liu, Y.: The solution of a modified Hamilton-Jacobi equation with Lorentz-violating scalar field. Gen. Relativ. Gravit. 52, 105 (2020). https://doi.org/10.1007/s10714-020-02762-3

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Liu, H.S., H, L.: Charged rotating AdS black hole and its thermodynamics in conformal gravity. J. High Energ. Phys 139, 2013 (2013). https://doi.org/10.1007/JHEP02(2013)139

    MathSciNet  Google Scholar 

  23. Belhaj, A., Chabab, M., Moumni, H.E., Medari, L., Sedra, M.B.: The Thermodynamical Behaviors of KerrNewman AdS Black Holes. Chinese Phys. Lett 30, 9 (2013). https://doi.org/10.1088/0256-307X/30/9/090402

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Zheng Yang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by National Natural Science Foundation of China under Grant No.11573022

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Yu, ZH. & Yang, SZ. Lorentz Symmetry Breaking and Entropy Correction of Kerr-Newman-Ads Black Hole. Int J Theor Phys 62, 75 (2023). https://doi.org/10.1007/s10773-023-05290-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-023-05290-3

Keywords

Navigation