Skip to main content
Log in

Nonclassical Properties via Subtracting Photons from Displaced Thermal States and Decoherence Evolution for Amplitude Decay

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Using the integration method within an ordered product of operators, we present (anti-) normal products of the density operators of photon-subtracted displaced thermal states (PSDTSs) and their normalization factors, and investigate their nonclassical features via the photocount distribution and the negativity of Wigner distribution function. Also, we analytically and numerically investigate the time-evolution law and decoherence behaviors for amplitude decay. The results show that, for the PSDTSs, the smaller photon subtraction numbers m and thermal variance V and the appropriate displacement d can lead to the stronger nonclassicality, however the PSDTSs with large m show more robustness against decoherence because their initial negativity decreases more slowly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Iannaccone, G., Bonaccorso, F., Colombo, L.: Nat. Nanotechnology. 183191 (2018)

  2. Huang, W., Qu, X., Yin, S.: IEEE. J Selected Topics in Quantum Electron, 1-7 (2020)

  3. Arceci, L., Silvi, P., Montangero, S.: Phys. Rev. Lett., 128040501 (2022)

  4. Anand, R.: Oral. Oncol., 125105704 (2022)

  5. Lewis, H.R. Jr: J. Math. Phys., 1976-1986 (1968)

  6. Jeong, H., Ralph, T.C.: Phys. Rev. Lett., 97100401 (2006)

  7. Jeong, H., Paternostro, M., Ralph, T.C.: Phys. Rev. Lett., 102060403 (2009)

  8. Łukasz, R., Walborn, S.P., Toscano, F.: Phys. Rev. A., 1-9 (2012)

  9. Zheng, S.B., Guo, G.C.: Phys. Rev. Lett., 852392 (2000)

  10. Imamoglu, A., Awschalom, D.D., Burkard, G.: Phys. Rev. Lett., 8320 (1999)

  11. Wu, W.F.: Chinese J. Phys. (2015)

  12. Zhang, R., Meng, X.G., Du, C.X.: J. Phys. Society Japan, 87024001 (2018)

  13. Meng, X.G., Li, K.C., Wang, J.S.: Annalender Physik., 5321900585 (2020)

  14. Meng, X.G., Wang, J.S., Zhang, X.Y.: Annalender Physik., 5322000219 (2020)

  15. Fan, H.: J. Phys. A: General Phys., 231833-1839 (1990)

  16. Cao, H., Ling, Y., Xu, J.Y.: Phys. Rev. Lett., 864524 (2001)

  17. Davis, C.C., King, T.A.: J. Phys. A: General Phys., 3101 (1970)

  18. Artoni, M., Ortiz, U.P., Birman, J.L.: Phys. Rev. A., 433954-3965 (1991)

  19. Fan, H.Y., Lou, S.Y., Hu, L.Y.: Chin. Phys. Lett., 30090304 (2013)

  20. Meng, X.G., Li, K.C., Wang, J.S.: Front. Phys., 151-11 (2020)

  21. Liu, J.Y., Wang, A.P., Wu, M.Y.: Int. J. Theor. Phys., 603115-3127 (2021)

  22. Meng, X, Goan, H.S., Wang, J.: Opt. Commun., 41115-20 (2018)

  23. Butt, H.J., Jaschke, M.: Nanotechnology, 61 (1995)

  24. Fischetti, M.V.: Phys. Rev. B., 594901 (1999)

  25. Diosi L.A.: Phys. Lett. A., 120377-381 (1987)

  26. Fan, H., Hu, L.: Modern Phys. Lett. B., 222435-2468 (2008)

  27. Fan, H.: Phys. Rev. A., 65064102 (2002)

  28. Hu, L.Y., Wang, Q., Wang, Z.S.: Int. J. Theor. Phys., 51331-349 (2012)

  29. Cabrera, R., Bondar, D.I., Jacobs, K.: Phys. Rev. A., 92042122 (2015)

Download references

Acknowledgements

Project supported by the Natural Science Foundation of Shandong Province (Grant Nos.ZR2020MA085 and ZR2020MF113).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangguo Meng.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Derivation of Normalization Factor \(\mathcal {N}_{m}\)

In order to obtain the factor \(\mathcal {N}_{m}\), we first use the formula

$$ \rho=\int \frac{d^{2}\alpha}{\pi}\left \langle -\alpha \right \vert \rho \left \vert \alpha \right \rangle {\vdots} \text{e}^{\left \vert \alpha \right \vert^{2} +\alpha^{\ast}a-\alpha a^{\dagger}+a^{\dagger}a}\vdots $$
(A1)

and the normal ordering product

$$ \rho=\frac{2\text{e}^{-\frac{2\left \vert d\right \vert^{2}}{V+1}}}{V+1} \colon \exp \left[ \frac{2}{V+1}\left( da^{\dag}+d^{\ast}a-a^{\dag}a\right) \right] \colon $$
(A2)

to calculate the antinormal ordering product of ρ as

$$ \rho=\frac{2\text{e}^{-\frac{2\left \vert d\right \vert^{2}}{V-1}}}{V-1} {\vdots} \exp \left[ \frac{2}{V-1}\left( da^{\dag}+d^{\ast}a-a^{\dag}a\right) \right] \vdots, $$
(A3)

thus the normalization factor \(\mathcal {N}_{m}\) can be expressed as

$$ \mathcal{N}_{m}=\frac{2\text{e}^{-\frac{2\left \vert d\right \vert^{2}}{V-1}} }{V-1}\text{tr}\left( {\vdots} a^{m}\exp \left[ \frac{2}{V-1}\left( da^{\dag }+d^{\ast}a-a^{\dag}a\right) \right] a^{\dagger m}{\vdots} \right) . $$
(A4)

Inserting the completeness relation of the coherent states \(\left \vert \alpha \right \rangle \) into Eq. A4 leads to

$$ \mathcal{N}_{m}=\frac{2\text{e}^{-\frac{2\left \vert d\right \vert^{2}}{V-1}} }{V-1}\int \frac{d^{2}\alpha}{\pi}\left \vert \alpha \right \vert^{2m} \text{e}^{\frac{2}{V-1}\left( d\alpha^{\ast}+d^{\ast}\alpha-\left \vert \alpha \right \vert^{2}\right) }, $$
(A5)

thus using the the mathematical integral formula

$$ \begin{array}{@{}rcl@{}} &&\int \frac{d^{2}\alpha}{\pi}\alpha^{n}\alpha^{\ast m}\exp \left( f\left \vert \alpha \right \vert^{2}+s\alpha+\eta \alpha^{\ast}\right) \\ &=&\left( -1\right)^{n+m+1}\sqrt{f^{-(n+m+2)}}\text{e}^{-s\eta/f} \text{H}_{m,n}(s/\sqrt{f},\eta/\sqrt{f}), \end{array} $$
(A6)

we can finally obtain the normalization factor\(\mathcal {N}_{m}\) in Eq. 4

Appendix B: Derivation of Eq. 16

Inserting the coherent representation of single-mode Wigner operator, i.e.,

$$ {\Delta} \left( \alpha \right) =\int \frac{d^{2}z}{\pi}\left \vert \alpha +z\right \rangle \left \langle \alpha-z\right \vert \text{e}^{\alpha z^{\ast }-\alpha^{\ast}z} $$
(B1)

and the normal ordering product of ρm in Eq. 7 into Eq. 15, and using the generating functions for Hermite polynomials in Eq. 10, we obtain

$$ \begin{array}{@{}rcl@{}} w\left( \alpha \right) & =&\frac{\mathcal{D}}{\pi}\text{e}^{-\frac {2\left \vert d-\alpha \right \vert^{2}}{1+V}}\frac{\partial^{2m}}{\partial s^{m}\partial t^{m}}\text{e}^{-st+\left( gd^{\ast}+h\alpha^{\ast}\right) s+\left( gd+h\alpha \right) t}\\ && \times \int \frac{d^{2}z}{\pi}\text{e}^{-\frac{2V}{1+V}\left \vert z\right \vert^{2}}\text{e}^{\left[ \frac{2\left( d^{\ast}-\alpha^{\ast }\right) }{1+V}+ht\right] z}\text{e}^{\left[-\frac{2\left( d-\alpha \right) }{1+V}-hs\right] z}. \end{array} $$
(B2)

Further, using the integration formula in Eq. 11 leads to

$$ w\left( \alpha \right) =\frac{\mathcal{D}\left( 1+V\right) }{\pi2V} \text{e}^{-\frac{2\left \vert d-\alpha \right \vert^{2}}{V}}\frac{\partial^{2m} }{\partial s^{m}\partial t^{m}}\text{e}^{-\frac{1+V}{2V}st+\left( gd^{\ast }+h\alpha^{\ast}-\frac{h\left( d^{\ast}-\alpha^{\ast}\right) }{V}\right) s+\left( gd+h\alpha-\frac{h\left( d-\alpha \right) }{V}\right) t}. $$
(B3)

Finally, we use the generating functions in Eq. 10 to derive Eq. 16.

Appendix C: Derivation of Eq. 25

In order to obtain Eq. 25, substituting Eq. 16 into the formula Eq. 24 and using the generating functions for Hermite polynomials in Eq. 10, we have

$$ \begin{array}{@{}rcl@{}} \mathcal{W}(\alpha,t) &=&\frac{2\mathcal{D}\left( 1+V\right)^{m+1}} {\pi \mathcal{T}\left( 2V\right)^{m+1}}\text{e}^{-\frac{2\left \vert d\right \vert^{2}}{V}-\frac{2}{\mathcal{T}}\left \vert \alpha \right \vert^{2} }\frac{\partial^{2m}}{\partial s^{m}\partial t^{m}}\text{e}^{-st+\frac {2\left( Vg-h\right) d^{\ast}}{1+V}s+\frac{2\left( Vg-h\right) d}{1+V}t} \\ && \times \int \frac{d^{2}\alpha^{\prime}}{\pi}\text{e}^{-{\varkappa} \left \vert \alpha^{\prime}\right \vert^{2}+\left( 2ht+\frac{2\text{e}^{-\kappa t}}{\mathcal{T}}\alpha^{\ast}-\frac{2d^{\ast}}{V}\right) \alpha^{\prime }+\left( 2hs+\frac{2\text{e}^{-\kappa t}}{\mathcal{T}}\alpha-\frac{2d} {V}\right) \alpha^{\prime \ast}}. \end{array} $$
(C1)

Using the integration formula in Eq. 11, thus Eq. C1 becomes

$$ \begin{array}{@{}rcl@{}} \mathcal{W}(\alpha,t) & =&\frac{2\mathcal{D}\left( 1+V\right)^{m+1}} {\pi \mathcal{T}\left( 2V\right)^{m+1}\left( \frac{2\text{e}^{-2\kappa t}}{\mathcal{T}}+\frac{2}{V}\right) }\text{e}^{-\frac{2\left \vert d\right \vert^{2}}{V}-\frac{2}{\mathcal{T}}\left \vert \alpha \right \vert^{2}}\\ && \times \frac{\partial^{2m}}{\partial s^{m}\partial t^{m}}\text{e}^{-st+\frac{2\left( Vg-h\right) d^{\ast}}{1+V}s+\frac{2\left( Vg-h\right) d}{1+V}t}\\ && \times \exp \left[ \frac{\left( 2ht+\frac{2\text{e}^{-\kappa t} }{\mathcal{T}}\alpha^{\ast}-\frac{2d^{\ast}}{V}\right) \left( 2hs+\frac {2\text{e}^{-\kappa t}}{\mathcal{T}}\alpha-\frac{2d}{V}\right) } {\frac{2\text{e}^{-2\kappa t}}{\mathcal{T}}+\frac{2}{V}}\right] , \end{array} $$
(C2)

thus using the generating functions in Eq. 10, we finally obtain the result in Eq. 25.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, A., Meng, X. & Wang, J. Nonclassical Properties via Subtracting Photons from Displaced Thermal States and Decoherence Evolution for Amplitude Decay. Int J Theor Phys 61, 267 (2022). https://doi.org/10.1007/s10773-022-05248-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-05248-x

Keywords

Navigation