Skip to main content
Log in

Convexity-preserving Properties of Partial Binary Operations with Respect to Filter Convex Structures on Effect Algebras

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper, we obtain that all filters and the empty set of every effect algebra could naturally form a convex structure, which is called a filter convex structure, and morphism (resp., monomorphism) between two effect algebras is convexity-preserving (resp., convex-to-convex) correspondingly constructed convexity spaces. Then we introduce the concept of nets (convergent nets) in convexity spaces that is compatible with convexity-preserving mappings and investigate some properties of convergent nets. Moreover, we prove that the partial subtraction − for the first position is convexity-preserving and the partial addition + is separately convexity-preserving with respect to filter convex structures by nets. Finally, we discuss convexity-preserving properties of the partial subtraction − for the first position and that the partial addition + is separately convexity-preserving in quotient (resp., finite product) of filter convex structures. For finite product, we also investigate the opposite direction for the partial subtraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beran, L.: Orthomodular Lattices. Springer, Netherlands, Praha (1985)

    Book  Google Scholar 

  2. Buhagiar, D., Chetcuti, E., Dvurečenskij, A.: Loomis-sikorski theorem and Stone duality for effect algebras with internal state. Fuzzy Sets Syst. 172, 71–86 (2011)

    Article  MathSciNet  Google Scholar 

  3. Chajda, I., Länger, H.: Residuation in lattice effect algebras. Fuzzy Sets Syst. 397, 168–178 (2020)

    Article  MathSciNet  Google Scholar 

  4. Dvurečenskij, A.: Fuzzy set representations of some quantum structures. Fuzzy Sets Syst. 101, 67–78 (1999)

    Article  MathSciNet  Google Scholar 

  5. Dvurečenskij, A., Hyčko, M.: Hyper effect algebras. Fuzzy Sets Syst. 326, 34–51 (2017)

    Article  MathSciNet  Google Scholar 

  6. Dvurečenskij, A., Pulmannová, S.: New trends in quantum structures. Springer-Science Business Media B.V. (2000)

  7. Foulis, D., Bennett, M. K.: Effect algebras and unsharp quantum logice. Found Phys. 24, 1331–1352 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  8. Gudder, S., Pulmannová, S.: Quotients of partial abelian monoids. Algebra Univ. 38, 395–421 (1997)

    Article  MathSciNet  Google Scholar 

  9. Jenča, G.: Notes on R1-ideals in partial abelian monoids. Algebra Univ. 43, 307–319 (2000)

    Article  MathSciNet  Google Scholar 

  10. Jenča, G.: Pseudo effect algebras are algebras over bounded posets. Fuzzy Sets Syst. 397, 179–185 (2020)

    Article  MathSciNet  Google Scholar 

  11. Jenča, G., Pulmannová, S.: Ideals and quotients in lattice ordered effect algebras. Soft Comput. 5, 376–380 (2001)

    Article  Google Scholar 

  12. Kalmbach, G.: Orthomodular Lattices. Academic press, London (1983)

    MATH  Google Scholar 

  13. Lei, Q., Wu, J. D., Li, R. L.: Frink ideal topology of lattice effect algebra. Rep. Math. Phys. 61, 327–335 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  14. Lei, Q., Wu, J. D., Li, R. L.: Interval topology of lattice effect algebras. Appl. Math. Lett. 22, 1003–1006 (2009)

    Article  MathSciNet  Google Scholar 

  15. Ma, Z. H.: Note on ideals of effect algebras. Inf. Sci. 179, 505–507 (2009)

    Article  MathSciNet  Google Scholar 

  16. Ma, Z. H., Wu, J. D., Lu, S. J.: Ideal topology on effect algebras. Int. J. Theor. Phys. 43(11), 2319–2323 (2004)

    Article  MathSciNet  Google Scholar 

  17. Maruyama, Y.: Lattice-valued fuzzy convex geometry. RIMS Kokyuroku 1641, 22–37 (2009)

    Google Scholar 

  18. Pang, B.: Convenient properties of stratified L-convergence tower spaces. Filomat 33, 4811–4825 (2019)

    Article  MathSciNet  Google Scholar 

  19. Pang, B.: Bases and subbases in (L,M)-fuzzy convex spaces. Comput. Appl. Math. 39, 1–21 (2020)

    Article  MathSciNet  Google Scholar 

  20. Pang, B., Shi, F. -G.: Fuzzy counterparts of hull operators and interval operators in the framework of L-convex spaces. Fuzzy Sets Syst. 369, 20–39 (2019)

    Article  MathSciNet  Google Scholar 

  21. Pulmannová, S.: Congruences in partial abelian semigroups. Algebra Univ. 37, 119–140 (1997)

    Article  MathSciNet  Google Scholar 

  22. Rosa, M. V.: On fuzzy topology fuzzy convexity spaces and fuzzy local convexity. Fuzzy Sets Syst. 62, 97–100 (1994)

    Article  MathSciNet  Google Scholar 

  23. Shi, F. -G., Xiu, Z. Y.: A new approach to the fuzzification of convex structures. J. Appl. Math. 3, 1–12 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  24. Shi, F. -G., Xiu, Z. Y.: (L,M)-fuzzy convex structures. J. Nonlinear Sci. Appl. 10(7), 3655–3669 (2017)

    Article  MathSciNet  Google Scholar 

  25. Tkadlec, J.: Distributivity and associativity in effect algebras. Fuzzy Sets Syst. 289, 151–156 (2016)

    Article  MathSciNet  Google Scholar 

  26. Van De Vel, M.: Theory of convex structures, north holland amsterdam (1993)

  27. Voráček, V.: Stateless quantum structures and extremal graph theory. Rep. Math. Phys. 86, 175–185 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  28. Wei, X.W., Shi, F.-G.: L-fuzzy ideal degrees in effect algebras, Kybernetika. Under review

  29. Wei, X. W., Wang, B.: Fuzzy (restricted) hull operators and fuzzy convex structures on L-sets. J. Nonlinear Convex Anal. 21(12), 2805–2815 (2020)

    MathSciNet  MATH  Google Scholar 

  30. Wu, J. D., Tang, Z. F., Cho, M. H.: Two variables operation continuity of effect algebras. Int. J. Theor. Phys. 44, 581–586 (2005)

    Article  MathSciNet  Google Scholar 

  31. Wu, Y. L., Wang, J., Yang, Y. C.: Lattice-ordered effect algebras and L-algebras. Fuzzy Sets Syst. 369, 103–113 (2019)

    Article  MathSciNet  Google Scholar 

  32. Zhang, H. Y., Hou, C. J.: Homomorphism on effect algebras. J. Math. 35, 1252–1258 (2015)

    MATH  Google Scholar 

  33. Zhang, J. H., Ji, G. X.: Automorphisms of effect algebras with respect to convex sequential product. Rep. Math. Phys. 87, 81–86 (2021)

    Article  MathSciNet  Google Scholar 

  34. Zhang, Q. W.: Note on ideals in effect algebras. Hennan Sci. 35 (10), 1567–1569 (2017)

    Google Scholar 

  35. Zhang, Y., Wu, H. B.: State lattice effect algebras and its basic properties. Fuzzy Syst. Math. 33, 28–34 (2019)

    MATH  Google Scholar 

  36. Zhang, Y., Wu, H. B.: Related properties of EA-filters with EA-morphism of effect algebras. Fuzzy Syst. Math. 33, 37–46 (2019)

    MATH  Google Scholar 

  37. Zhou, X. W., Shi, F. -G.: Some new results on six types mappings between L-convex spaces. Filomat 34, 4767–4781 (2020)

    Article  MathSciNet  Google Scholar 

  38. Zhu, S., Ma, Z. H.: Interval topology on effect algebras. Appl. Math. Lett. 25, 631–635 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the Natural Science Foundation of China (11871097, 12071033, 11971448) and Beijing Institute of Technology Science and Technology Innovation Plan Cultivation Project (2021CX01030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu-Gui Shi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, X., Shi, FG. Convexity-preserving Properties of Partial Binary Operations with Respect to Filter Convex Structures on Effect Algebras. Int J Theor Phys 61, 195 (2022). https://doi.org/10.1007/s10773-022-05189-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-05189-5

Keywords

Navigation