Skip to main content
Log in

Quantumness of Pure-State Ensembles via Coherence of Gram Matrix Based on Generalized α-z-Relative Rényi Entropy

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The Gram matrix of a set of quantum pure states plays key roles in quantum information theory. It has been highlighted that the Gram matrix of a pure-state ensemble can be viewed as a quantum state, and the quantumness of a pure-state ensemble can thus be quantified by the coherence of the Gram matrix [Europhys. Lett. 134, 30003]. Instead of the l1-norm of coherence and the relative entropy of coherence, we utilize the generalized α-z-relative Rényi entropy of coherence of the Gram matrix to quantify the quantumness of a pure-state ensemble and explore its properties. We show the usefulness of this quantifier by calculating the quantumness of six important pure-state ensembles. Furthermore, we compare our quantumness with other existing ones and show their features as well as orderings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge Univeraity Press, Cambridge (1985)

    Book  MATH  Google Scholar 

  2. Fannes, M., Spincemaille, P.: The mutual affinity of random measures. arXiv:mathph/0112034 (2001)

  3. Haikin, M., Zamir, R., Gavish, M.: Frame moments and welch bound with erasures. arXiv:1801.04548 (2018)

  4. Banica, T., Curran, S.: Decomposition results for Gram matrix determinants. J. Math. Phys. 51, 113503 (2010)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  5. Fannes, M., De Melo, F., Roga, W.: Matrices of fidelities for ensembles of quantum states and the Holevo quantity. Quantum Inf. Comput. 12, 472 (2012)

    MathSciNet  MATH  Google Scholar 

  6. Robertson, H.P.: An indeterminacy relation for several observables and its classical interpretation. Phys. Rev. 46, 794 (1934)

    Article  MATH  ADS  Google Scholar 

  7. Gibilisco, P., Imparato, D., Isola, T.: A volume inequality for quantum fisher information and the uncertainty principle. J. Stat. Phys. 130, 545 (2007)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  8. Bong, K.-W., Tischler, N., Patel, R.B., Wollmann, S., Pryde, G.J., Hall, M.J.W.: Strong unitary and overlap uncertainty relations: theory and experiment. Phys. Rev. Lett. 120, 230402 (2018)

    Article  ADS  Google Scholar 

  9. Dieks, D.: Overlap and distinguishability of quantum states. Phys. Lett. A 126, 303 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  10. Fuchs, C.A.: Distinguishability and accessible information in quantum theory. arXiv:9601020 (1996)

  11. Jozsa, R., Schlienz, J.: Distinguishability of states and von neumann entropy. Phys. Rev. A 62, 012301 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  12. Montanaro, A.: On the distinguishability of random quantum states. Commun. Math. Phys. 273, 619 (2007)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  13. Pozza, N.D., Pierobon, G.: On the optimality of square root measurements in quantum state discrimination. Phys. Rev. A 91, 042334 (2015)

    Article  ADS  Google Scholar 

  14. Vargas, E.M., Mun̈oz-Tapia, R.: Certified answers for ordered quantum discrimination problems. Phys. Rev. A 100, 042331 (2019)

    Article  ADS  Google Scholar 

  15. Chefles, A.: Deterministic quantum state transformations. Phys. Lett. A 270, 14 (2000)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  16. Chefles, A., Jozsa, R., Winter, A.: On the existence of physical transformations between sets of quantum states. Int. J. Quantum Inf. 2, 11 (2004)

    Article  MATH  Google Scholar 

  17. Chang, L., Luo, S., Sun, Y.: Superposition quantification. Commun. Theor. Phys. 68, 565 (2017)

    Article  MATH  ADS  Google Scholar 

  18. Sun, B., Fei, S.-M., Li-Jost, X.: Quantum information masking of Hadamard sets. Quant. Inform. Process. 20, 324 (2021)

    Article  MathSciNet  ADS  Google Scholar 

  19. Weigert, S.: The Gram matrix of a PT-symmetric quantum system. Czech. J. Phys. 54, 147 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  20. Fuchs, C.A.: Just two nonorthogonal quantum states arXiv:quant-ph/9810032v1 (1998)

  21. Fuchs, C.A., Sasaki, M.: Squeezing quantum information through a classical channel: measuring the “quantumness” of a set of quantum states. Quantum Inf. Comput. 3, 377 (2003)

    MathSciNet  MATH  Google Scholar 

  22. Luo, S., Li, N., Fu, S.: Quantumness of quantum ensembles. Theor. Math. Phys. 169, 1724 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Fuchs, C.A., Sasaki, M.: The quantumness of a set of quantum states arXiv:quant-ph/0302108v1 (2003)

  24. Fuchs, C.A.: On the quantumness of a Hilbert space. Quantum Inf. Comput. 4, 467 (2004)

    MathSciNet  MATH  Google Scholar 

  25. Luo, S., Li, N., Cao, X.: Relative entropy between quantum ensembles. Period. Math. Hung. 59, 223 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Luo, S., Li, N., Sun, W.: How quantum is a quantum ensemble?. Quantum Inf. Process. 9, 711 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Li, N., Luo, S., Mao, Y.: Quantifying the quantumness of ensembles. Phys. Rev. A 96, 022132 (2017)

    Article  ADS  Google Scholar 

  28. Qi, X., Gao, T., Yan, F.: Quantifying the quantumness of ensembles via unitary similarity invariant norms. Front. Phys. 13, 130309 (2018)

    Article  Google Scholar 

  29. Li, N., Luo, S., Song, H.: Monotonicity of quantumness of ensembles under commutativity-preserving channels. Phys. Rev. A 99, 52114 (2019)

    Article  ADS  Google Scholar 

  30. Mao, Y., Song, H.: Quantumness of ensembles via coherence. Phys. Lett. A 383, 2698 (2019)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  31. Huang, H., Wu, Z., Zhu, C., Fei, S.-M.: Quantifying the quantumness of ensembles via generalized α-z-relative rényi entropy. Int. J. Theor. Phys. 60, 2368–2379 (2021)

    Article  MATH  Google Scholar 

  32. Sun, Y., Luo, S., Lei, X.: Quantumness of ensemble via coherence of Gram matrix. Europhys. Lett. 134, 30003 (2021)

    Article  ADS  Google Scholar 

  33. Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)

    Article  ADS  Google Scholar 

  34. Yu, X., Zhang, D., Xu, G., Tong, D.: Alternative framework for quantifying coherence. Phys. Rev. A 94, 060302 (2016)

    Article  ADS  Google Scholar 

  35. Xiong, C., Kumar, A., Wu, J.: Family of coherence measures and duality between quantum coherence and path distinguishability. Phys. Rev. A 98, 032324 (2018)

    Article  ADS  Google Scholar 

  36. Audenaert, K.M.R., Datta, N.: α-z-Rényi relative entropies. J. Math. Phys. 56, 022202 (2015)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  37. Zhao, H., Yu, C.: Coherence measure in terms of the Tsallis relative α entropy. Sci. Rep. 8, 299 (2018)

    Article  ADS  Google Scholar 

  38. Rastegin, A.E.: Quantum-coherence quantifiers based on the Tsallis relative α entropies. Phys. Rev. A 93, 032136 (2016)

    Article  ADS  Google Scholar 

  39. Zhu, X., Jin, Z., Fei, S.-M.: Quantifying quantum coherence based on the generalized α-z-relative rényi entropy. Quantum Inf. Process. 18, 179 (2019)

    Article  ADS  Google Scholar 

  40. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121–3124 (1992)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  41. Phonex. S.J.D., Barnett, S.M., Chefles. A.: Three-state quantum cryptography. J. Modern Opt. 507-516, 47 (2000)

    MathSciNet  Google Scholar 

  42. Peres, A., Wootters, W.K.: Optimal detection of quantum information. Phys. Rev. Lett. 66, 1119–1122 (1991)

    Article  ADS  Google Scholar 

  43. Hausladen, P., Wootters, W.K.: A ‘pretty good’ measurement for distinguishing quantum states. J. Modern Opt. 41, 2385–2390 (1994)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  44. Boileau, J.C., Boileau, K.X., Batuwantudawe, J., Laflamme, R., Renes, J.M.: Unconditional security of a three state quantum key distribution protocol. Phys. Rev. Lett. 94, 040503 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  45. Holevo, A.S.: Information-theoretical aspects of quantum measurement. Probl. Inf. Transm. 9, 110–118 (1973)

    MathSciNet  Google Scholar 

  46. Davis, E.: Information and quantum measurement. IEEE Trans. Inf. Theory 24, 596 (1978)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  47. Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and tossing. In: Proceedings of IEEE International Conf. Computer, Systems, and Signal Processing, Bangalore, India (1984)

  48. Renes, J.M., Blume-Kohout, R., Scott, A.J., Caves, C.M.: Symmetric informationally complete quantum measurements. J. Math. Phys. 45, 2171–2180 (2004)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  49. Scott, A.J., Grassl, M.: Symmetric informationally complete positive-operator-valued measures: a new computer study. J. Math. Phys. 51, 042203 (2010)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  50. Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Phys. Rev. Lett. 81, 3018–3021 (1998)

    Article  ADS  Google Scholar 

  51. Bechmann-Pasquinucci, H., Gisin, N.: Incoherent and coherent eavesdropping in the six-state protocol of quantum cryptography. Phys. Rev. A 59, 4238–4248 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  52. Shadman, Z., Kampermann, H., Meyer, T., Bruß, D.: Optimal eavesdropping on noisy states in quantum key distribution. Int. J. Quantum Inf. 7, 297–306 (2009)

    Article  MATH  Google Scholar 

  53. Wootters, W.K., Fields, B.D.: Optimal state-determination by mutually unbiased measurements. Ann. Phys. 191, 363–381 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  54. Streltsov, A., Adesso, G., Plenio, M.B.: Colloquium: Quantum coherence as a resource. Rev. Mod. Phys. 89, 041003 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  55. Shao, L.-H., Xi, Z., Fan, H., Li, Y.: Fidelity and trace-norm distances for quantifying coherence. Phys. Rev. A 91, 042120 (2014)

    Article  ADS  Google Scholar 

  56. Rana, S., Parashar, P., Lewenstein, M.: Trace-distance measure of coherence. Phys. Rev. A 93, 012110 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  57. D’Espagnat, B.: Veiled reality: An Analysis of Present-Day Quantum Mechanical Concepts. Addison-wesley, Reading MA (1995)

  58. Long, G., Zhou, Y., Jin, J., Sun, Y., Lee, H.W.: Density matrix in quantum mechanics and distinctness of ensembles having the same compressed density matrix. Found. Phys. 36, 1217–1243 (2006)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  59. Kwek, L.-C., Cao, L., Luo, W., Wang, Y., Sun, S., Wang, X., Liu, A.Q.: Chip-based quantum key distribution. AAPPS Bull. 31, 15 (2021)

    Article  Google Scholar 

  60. Long, G.-L., L, X.-S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  61. Sheng, Y.-B., Lan, Z., Long, G.-L.: One-step quantum secure direct communication. Sci. Bull. 67, 367–374 (2022)

    Article  Google Scholar 

  62. Pang, J.-Y., Chen, J.-W.: On the renormalization of entanglement entropy. AAPPS Bull. 31, 28 (2021)

    Article  ADS  Google Scholar 

  63. Huang, W.-J., Chien, W.-C., Cho, C.-H., Huang, C.-C., Huang, T.-W., Chang, C.-R.: Mermin’s inequalities of multiple qubits with orthogonal measurements on IBM Q 53-qubit system. Quantum Eng. 2, e45 (2020)

    Google Scholar 

  64. Long, G.: Collapse-in and collapse-out in partial measurement in quantum mechanics and its wise interpretation. Sci. China Phys. Mech. Astron. 64, 280321 (2021)

    Article  ADS  Google Scholar 

  65. Zhou, L., Liu, J., Liu, Z., Zhong, W., Sheng, Y.: Logic W-state concentration with parity check. Quantum Eng. 3, e63 (2021)

    Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere gratitude to the anonymous referees for their valuable comments and suggestions, which have greatly improved this paper. This work was supported by National Natural Science Foundation of China (Grant Nos. 12161056, 11701259, 12075159, 12171044); Jiangxi Provincial Natural Science Foundation (Grant No. 20202BAB201001); Beijing Natural Science Foundation (Grant No. Z190005); Academy for Multidisciplinary Studies, Capital Normal University; the Academician Innovation Platform of Hainan Province; Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology (Grant No. SIQSE202001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoqi Wu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Proof of the subadditivity of the quantumness Q α,z(⋅)

Appendix: Proof of the subadditivity of the quantumness Q α,z(⋅)

According to (6), we have

$$\begin{array}{@{}rcl@{}} Q_{\alpha,z}^{\prime}(\mathcal{E}\otimes\mathcal{F})&=&\underset{\sigma_{1}\in\mathcal{I}_{1},\sigma_{2}\in\mathcal{I}_{2}}{\min}\frac{f^{\frac{1}{\alpha}}_{\alpha,z}(G_{\mathcal{E}\otimes \mathcal{F}},\sigma_{1}\otimes \sigma_{2})-1}{nm(\alpha-1)},\\ Q_{\alpha,z}^{\prime}(\mathcal{E})&=&\underset{\sigma_{1}\in\mathcal{I}_{1}}{\min}\frac{f^{\frac{1}{\alpha}}_{\alpha,z}(G_{\mathcal{E}}, \sigma_{1})-1}{n(\alpha-1)},\\ Q_{\alpha,z}^{\prime}(\mathcal{F})&=&\underset{\sigma_{2}\in\mathcal{I}_{2}}{\min}\frac{f^{\frac{1}{\alpha}}_{\alpha,z}(G_{\mathcal{F}}, \sigma_{2})-1}{m(\alpha-1)}, \end{array}$$

where \(\mathcal {I}_{1}\) and \(\mathcal {I}_{2}\) denotes the set of incoherent states on the m-dimensional and n-dimensional Hilbert spaces, respectively. By the tensor multiplicability of the Gram matrix, i.e., \(G_{\mathcal {E}\otimes \mathcal {F}}=G_{\mathcal {E}}\otimes G_{\mathcal {F}}\), we have

$$\begin{array}{@{}rcl@{}} &&f^{\frac{1}{\alpha}}_{\alpha,z}(G_{\mathcal{E}\otimes \mathcal{F}},\sigma_{1}\otimes \sigma_{2})\\ &=&\{\text{Tr}[(\sigma_{1}\otimes\sigma_{2})^{\frac{1-\alpha}{2z}}{G_{\mathcal{E}\otimes \mathcal{F}}}^{\frac{\alpha}{z}}(\sigma_{1}\otimes\sigma_{2})^{\frac{1-\alpha}{2z}}]^{z}\}^{\frac{1}{\alpha}}\\ &=&[\text{Tr}({\sigma_{1}}^{\frac{1-\alpha}{2z}}{G_{\mathcal{E}}}^{\frac{\alpha}{z}}{\sigma_{1}}^{\frac{1-\alpha}{2z}})^{z}]^{\frac{1}{\alpha}}\cdot [\text{Tr}({\sigma_{2}}^{\frac{1-\alpha}{2z}}{G_{\mathcal{F}}}^{\frac{\alpha}{z}}{\sigma_{2}}^{\frac{1-\alpha}{2z}})^{z}]^{\frac{1}{\alpha}}\\ &=&f_{\alpha,z}^{\frac{1}{\alpha}}(G_{\mathcal{E}},\sigma_{1})\cdot f_{\alpha,z}^{\frac{1}{\alpha}}(G_{\mathcal{F}},\sigma_{2}). \end{array}$$

So in order to prove the subadditivity, we only need to prove that

$$\begin{array}{@{}rcl@{}} &&\underset{\sigma_{1}\in\mathcal{I}_{1},\sigma_{2}\in\mathcal{I}_{2}}{\min}\frac{f_{\alpha,z}^{\frac{1}{\alpha}}(G_{\mathcal{E}},\sigma_{1})\cdot f_{\alpha,z}^{\frac{1}{\alpha}}(G_{\mathcal{F}},\sigma_{2})-1}{nm(\alpha-1)} \\ &&\le\underset{\sigma_{1}\in\mathcal{I}_{1}}{\min}\frac{f_{\alpha,z}^{\frac{1}{\alpha}}(G_{\mathcal{E}},\sigma_{1})-1}{n(\alpha-1)} +\underset{\sigma_{2}\in\mathcal{I}_{2}}{\min}\frac{f_{\alpha,z}^{\frac{1}{\alpha}}(G_{\mathcal{F}},\sigma_{2})-1}{m(\alpha-1)}. \end{array}$$
(15)
  1. Case (i):

    0 < α < 1,z > 0. Since the matrix \({\sigma }^{\frac {1-\alpha }{2z}}{\rho }^{\frac {\alpha }{z}} {\sigma }^{\frac {1-\alpha }{2z}}\) has real, non-negative eigenvalues, we obtain \(f_{\alpha ,z}^{\frac {1}{\alpha }}(G_{\mathcal {E}},\sigma _{1})\geq 0\) and \(f_{\alpha ,z}^{\frac {1}{\alpha }}(G_{\mathcal {F}},\sigma _{2})\geq 0\). Noting that \(f_{\alpha ,z}^{\frac {1}{\alpha }}(\rho ,\sigma )\leq 1\) when 0 < α < 1, we have \(0\leq f_{\alpha ,z}^{\frac {1}{\alpha }}(G_{\mathcal {E}},\sigma _{1})\leq 1\) and \(0\leq f_{\alpha ,z}^{\frac {1}{\alpha }}(G_{\mathcal {F}},\sigma _{2})\leq 1\), which implies that

    $$(f_{\alpha,z}^{\frac{1}{\alpha}} (G_{\mathcal{E}},\sigma_{1})-n)(f_{\alpha,z}^{\frac{1}{\alpha}}(G_{\mathcal{F}},\sigma_{2})-m)\geq(1-n)(1-m)$$
    (16)

    for each \(\sigma _{1}\in \mathcal {I}_{1}\) and \(\sigma _{2}\in \mathcal {I}_{2}\). Hence, (15) holds.

  2. Case (ii):

    1 < α ≤ 2,z > 0. Since the completely mixed state σ = I/d is a diagonal matrix, which is an incoherent state, we have \(\underset {\sigma \in \mathcal {I}}{\min \limits }f_{\alpha ,z}^{\frac {1}{\alpha }}(\rho ,\sigma )\leq f_{\alpha ,z}^{\frac {1}{\alpha }}(\rho ,\sigma _{*})= (d^{\alpha -1}{\text {Tr}(\rho ^{\alpha })})^{\frac {1}{\alpha }}\leq d\). Noting that \(f_{\alpha ,z}^{\frac {1}{\alpha }}(\rho ,\sigma )\geq 1\) when α > 1, we have \(1\leq \underset {\sigma _{1}\in \mathcal {I}_{1}}{\min \limits }f_{\alpha ,z}^{\frac {1}{\alpha }}(G_{\mathcal {E}},\sigma _{1})\le n\) and \(1\leq \underset {\sigma _{2}\in \mathcal {I}_{2}}{\min \limits }f_{\alpha ,z}^{\frac {1}{\alpha }}(G_{\mathcal {F}},\sigma _{2})\le m\), which implies that

    $$\begin{array}{@{}rcl@{}} &\underset{\sigma_{1}\in\mathcal{I}_{1}}{\min}f_{\alpha,z}^{\frac{1}{\alpha}}(G_{\mathcal{E}},\sigma_{1})\cdot \underset{\sigma_{2}\in\mathcal{I}_{2}}{\min}f_{\alpha,z}^{\frac{1}{\alpha}}(G_{\mathcal{F}},\sigma_{2})-1 \\ &\leq m\left( \underset{\sigma_{1}\in\mathcal{I}_{1}}{\min}f_{\alpha,z}^{\frac{1}{\alpha}}(G_{\mathcal{E}},\sigma_{1})-1\right) +n\left( \underset{\sigma_{2}\in\mathcal{I}_{2}}{\min}f_{\alpha,z}^{\frac{1}{\alpha}}(G_{\mathcal{F}},\sigma_{2})-1\right), \end{array}$$

    and thus (15) holds.

In either case, we have proved (15), and so (7) is established. This completes the proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, W., Wu, Z. & Fei, SM. Quantumness of Pure-State Ensembles via Coherence of Gram Matrix Based on Generalized α-z-Relative Rényi Entropy. Int J Theor Phys 61, 169 (2022). https://doi.org/10.1007/s10773-022-05153-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-05153-3

Keywords

Navigation