Skip to main content
Log in

Fast Quantum Private Comparison Without Keys and Entanglement

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Nowadays, there are a lot of quantum private comparison (QPC) protocols put forward with various quantum technologies. These protocols are found to perform QPC generally deploying user-shared keys or entanglement. However, either the establishment of secret keys or the preparation of entangled states is time consuming, and also their relative devices are usually costly. In order to overcome the shortcomings, this work designs a fast QPC protocol only using single particles without keys and entanglement, allowing two users to compare the equality of their secrets under the help of two semi-honest third parties. It would be ideal for cases needing a fast and low-cost QPC, easy to implement with common quantum technologies. These traits make it an alternative way to operate QPC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Yang, Y.G., Gao, W.F., Wen, Q.Y.: Secure quantum private comparison. Phys. Scr. 80(6), 065002 (2009)

    Article  ADS  MATH  Google Scholar 

  2. Liu, B., Gao, F., Jia, H.Y., Huang, W., Zhang, W.W., Wen, Q.Y.: Efficient quantum private comparison employing single photons and collective detection. Quantum Inf. Process. 12(2), 887–897 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Chen, X.B., Su, Y., Niu, X.X., Yang, Y.X.: Efficient and feasible quantum private comparison of equality against the collective amplitude damping noise. Quantum Inf. Process. 13(1), 101–112 (2014)

    Article  ADS  MATH  Google Scholar 

  4. Sun, Z.W., Yu, J.P., Wang, P., Xu, L.L., Wu, C.H.: Quantum private comparison with a malicious third party. Quantum Inf. Process. 14(6), 2125–2133 (2015)

    Article  ADS  MATH  Google Scholar 

  5. Lang, Y.-F.: Semi-quantum private comparison using single photons. Int. J. Theor. Phys. 57(10), 3048–3055 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ye, T.-Y., Ye, C.-Q.: Measure-resend semi-quantum private comparison without entanglement. Int. J. Theor. Phys. 57(12), 3819–3834 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Yang, Y.G., Xia, J., Jia, X., Shi, L., Zhang, H.: New quantum private comparison protocol without entanglement. Int. J. Quant. Inform. 10(6), 1250065 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ye, T.Y.: Quantum private comparison via cavity QED. Commun. Theor. Phys. 67(2), 147–156 (2017)

    Article  ADS  Google Scholar 

  9. Yang, Y.G., Wen, Q.Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A: Math. Theor. 42(5), 055305 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Liu, W., Wang, Y.B., Cui, W.: Quantum private comparison protocol based on Bell entangled states. Commun. Theor. Phys. 57(4), 583–588 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Zi, W., Guo, F.Z., Luo, Y., Cao, S.H., Wen, Q.Y.: Quantum private comparison protocol with the random rotation. Int. J. Theor. Phys. 52(9), 3212–3219 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Tseng, H.Y., Lin, J., Hwang, T.: New quantum private comparison protocol using EPR pairs. Quantum Inf. Process. 11(2), 373–384 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Wang, C., Xu, G., Yang, Y.X.: Cryptanalysis and improvements for the quantum private comparison protocol using EPR pairs. Int. J. Quant. Inform. 11(4), 1350039 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Yang, Y.G., Xia, J., Jia, X., Zhang, H.: Comment on quantum private comparison protocols with a semihonest third party. Quantum Inf. Process. 12(2), 877–885 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Zhang, W.W., Zhang, K.J.: Cryptanalysis and improvement of the quantum private comparison protocol with semi-honest third party. Quantum Inf. Process. 12(5), 1981–1990 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Lin, J., Yang, C.W., Hwang, T.: Quantum private comparison of equality protocol without a third party. Quantum Inf. Process. 13(2), 239–247 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Zhang, B., Liu, X.T., Wang, J., Tang, C.J.: Cryptanalysis and improvement of quantum private comparison of equality protocol without a third party. Quantum Inf. Process. 14(12), 4593–4600 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  18. Lang, Y.-F.: Quantum gate-based quantum private comparison. Int. J. Theor. Phys. 59(3), 833–840 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, J., Zhou, H.F., Jia, L., Zhang, T.T.: An efficient protocol for the private comparison of equal information based on four-particle entangled W state and Bell entangled states swapping. Int. J. Theor. Phys. 53(7), 2167–2176 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu, W., Wang, Y.B., Jiang, Z.T.: An efficient protocol for the quantum private comparison of equality with W state. Opt. Commun. 284(12), 3160–3163 (2011)

    Article  ADS  Google Scholar 

  21. Zhang, W.W., Li, D., Li, Y.B.: Quantum private comparison protocol with W states. Int. J. Theor. Phys. 53(5), 1723–1729 (2014)

    Article  Google Scholar 

  22. Lang, Y.-F.: Quantum Private Comparison without Classical Computation. Int. J. Theor. Phys. 59(9), 2984–2992 (2020)

    Article  MATH  Google Scholar 

  23. Chen, X.B., Xu, G., Niu, X.X., Wen, Q.Y., Yang, Y.X.: An efficient protocol for the private comparison of equal information based on the triplet entangled state and single-particle measurement. Opt. Commun. 283(7), 1561–1565 (2010)

    Article  ADS  Google Scholar 

  24. Lin, J., Tseng, H.Y., Hwang, T.: Intercept-resend attacks on Chen et al.’s quantum private comparison protocol and the improvements. Opt. Commun. 284(9), 2412–2414 (2011)

    Article  ADS  Google Scholar 

  25. Li, Y.B., Wang, T.Y., Chen, H.Y., et al.: Fault-tolerate quantum private comparison based on GHZ states and ECC. Int. J. Theor. Phys. 52(8), 2818–2825 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Chang, Y.J., Tsai, C.W., Hwang, T.: Multi-user private comparison protocol using GHZ class states. Quantum Inf. Process. 12(2), 1077–1088 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Xu, G.A., Chen, X.B., Wei, Z.H., Li, M.J., Yang, Y.X.: An efficient protocol for the quantum private comparison of equality with a four-qubit cluster state. Int. J. Quant. Inform. 10(4), 1250045 (2012)

    Article  MathSciNet  Google Scholar 

  28. Sun, Z.W., Long, D.Y.: Quantum private comparison protocol based on cluster states. Int. J. Theor. Phys. 52(1), 212–218 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Liu, W., Wang, Y.B., Jiang, Z.T., Cao, Y.Z.: A protocol for the quantum private comparison of equality with χ-type state. Int. J. Theor. Phys. 51(1), 69–77 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Liu, W., Wang, Y.B., Jiang, Z.T., Cao, Y.Z., Cui, W.: New quantum private comparison protocol usingχ-type state. Int. J. Theor. Phys. 51(6), 1953–1960 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lin, S., Guo, G.D., Liu, X.F.: Quantum private comparison of equality with χ-type entangled states. Int. J. Theor. Phys. 52(11), 4185–4194 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ye, T.Y., Ji, Z.X.: Two-party quantum private comparison with five-qubit entangled states. Int. J. Theor. Phys. 56(5), 1517–1529 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ji, Z.X., Ye, T.Y.: Quantum private comparison of equal information based on highly entangled six-qubit genuine state. Commun. Theor. Phys. 65(6), 711–715 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Ji, Z.X., Zhang, H.G., Fan, P.R.: Two-party quantum private comparison protocol with maximally entangled seven-qubit state. Mod. Phys. Lett. A 34(28), 1–179 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  35. Liu, W., Wang, Y.B., Wang, X.M.: Multi-party quantum private comparison protocol using d-dimensional basis states without entanglement swapping. Int. J. Theor. Phys. 53(4), 1085–1091 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. Luo, Q.B., Yang, G.W., She, K., Niu, W.N., Wang, Y.Q.: Multi-party quantum private comparison protocol based on d-dimensional entangled states. Quantum Inf. Process. 13(10), 2343–2352 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Wang, Q.L., Sun, H.X., Huang, W.: Multi-party quantum private comparison protocol with n-level entangled states. Quantum Inf. Process. 13(11), 2375–2389 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Ji, Z.X., Ye, T.Y.: Multi-party quantum private comparison based on the entanglement swapping of d-level Cat states and d-level Bell states. Quantum Inf. Process. 16(7), 177 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Ye, C.Q., Ye, T.Y.: Multi-party quantum private comparison of size relation with d-level single-particle states. Quantum Inf. Process. 17(10), 252 (2018)

    Article  ADS  MATH  Google Scholar 

  40. Lang, Y.-F.: Improvement of multi-party quantum private comparison protocol using d-dimensional basis states without entanglement swapping. Int. J. Theor. Phys. 59(9), 2773–2780 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  41. Chou, W.H., Hwang, T., Gu, J.: Semi-quantum private comparison protocol under an almost-dishonest third party. http://arxiv.org/pdf/quant-ph/160707961.pdf

  42. Lo, H.K.: Insecurity of quantum secure computations. Phys. Rev. A 56(2), 1154–1162 (1997)

    Article  ADS  Google Scholar 

  43. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  44. Li, C.Y., Zhou, H.Y., Wang, Y., Deng, F.G.: Secure quantum key distribution network with Bell states and local unitary operations. Chin. Phys. Lett. 22(5), 1049–1052 (2005)

    Article  ADS  Google Scholar 

  45. Li, C.Y., Li, X.H., Deng, F.G., Zhou, P., Liang, Y.J., Zhou, H.Y.: Efficient quantum cryptography network without entanglement and quantum memory. Chin. Phys. Lett. 23(11), 2896–2899 (2006)

    Article  ADS  Google Scholar 

  46. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441–444 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author Lang Yan-Feng thanks Daughter Lang Duo-Zi for her support on this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-Feng Lang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lang, YF. Fast Quantum Private Comparison Without Keys and Entanglement. Int J Theor Phys 61, 45 (2022). https://doi.org/10.1007/s10773-022-05033-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-05033-w

Keywords

Navigation