Skip to main content
Log in

Assisted Coherence Distillation of Certain Mixed States

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We study the assisted coherence distillation of two special classes of mixed states including the states with vanished basis-dependent discord in the incoherent basis of the second party and Werner two-qubit states via the sets of operations such as local incoherent operations and classical communication (LICC), local quantum-incoherent operations and classical communication (LQICC), separable incoherent operations (SI), and separable quantum-incoherent operations (SQI). We show that the assisted distillable coherence of the former can reach the upper bound, namely quantum-incoherent (QI) relative entropy via all the sets of operations considered above. In contrast, for the Werner two-qubit states the assisted distillable coherence is strictly smaller than the quantum-incoherent (QI) relative entropy. Our results also mean that the optimal rate of assisted coherence distillation of Werner two-qubit states can be achieved even in one-copy scenarios without the complex joint quantum operations on many copies. Finally, we discuss the coherence location in the multipartite system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Modi, K., Brodutch, A., Cable, H., Paterek, T., Vedral, V.: The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84(4), 1655–1707 (2011)

    Article  ADS  Google Scholar 

  3. Hillery, M.: Coherence as a resource in decision problems: The Deutsch-Jozsa algorithm and a variation. Phys. Rev. A 93, 012111 (2016)

    Article  ADS  Google Scholar 

  4. Shahandeh, F., Lund, A.P., Ralph, T.C.: Quantum correlations and global coherence in distributed quantum computing. Phys. Rev. A 99, 052303 (2019)

    Article  ADS  Google Scholar 

  5. Wu, K.D., Theurer, T., Xiang, G.Y., Li, C.F., Guo, G.C., Plenio, M.B., Streltsov, A.: Quantum coherence and state conversion: theory and experiment. npj Quantum Inf. 6, 22 (2020)

    Article  ADS  Google Scholar 

  6. Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)

    Article  ADS  Google Scholar 

  7. Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115, 020403 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  8. Ma, J., Yadin, B., Girolami, D., Vedral, V., Gu, M.: Converting coherence to quantum correlations. Phys. Rev. Lett. 116, 160407 (2015)

    Article  Google Scholar 

  9. Streltsov, A., Chitambar, E., Rana, S., Bera, M.N., Adesso, G., Lewenstein, M.: Entanglement and coherence in quantum state merging. Phys. Rev. Lett. 116, 240405 (2016)

    Article  ADS  Google Scholar 

  10. Chitambar, E., Hsieh, M.H.: Relating the resource theories of entanglement and quantum coherence. Phys. Rev. Lett. 117, 020402 (2016)

    Article  ADS  Google Scholar 

  11. Xi, Z.J., Li, Y., Fan, H.: Quantum coherence and correlations in quantum system. Sci. Rep. 5, 10922 (2015)

    Article  ADS  Google Scholar 

  12. Yao, Y., Xiao, X., Ge, L., Sun, C.P.: Quantum coherence in multipartite systems. Phys. Rev. A 92, 022112 (2015)

    Article  ADS  Google Scholar 

  13. Tan, K.C., Kwon, H., Park, C.Y., Jeong, H.: A unified view of quantum correlations and quantum coherence. Phys. Rev. A 94, 022329 (2016)

    Article  ADS  Google Scholar 

  14. Wang, X.L., Yue, Q.L., Yu, C.H., Gao, F., Qin, S.J.: Relating quantum coherence and correlations with entropy-based measures. Sci. Rep. 7(1), 12122 (2017)

    Article  ADS  Google Scholar 

  15. Guo, Y., Goswami, S.: Discordlike correlation of bipartite coherence. Phys. Rev. A 95, 062340 (2016)

    Article  ADS  Google Scholar 

  16. Du, S.P., Bai, Z.F., Guo, Y.: Conditions for coherence transformations under incoherent operations. Phys. Rev. A 91, 052120 (2015)

    Article  ADS  Google Scholar 

  17. Yuan, X., Zhou, H., Cao, Z., Ma, X.F.: Intrinsic randomness as a measure of quantum coherence. Phys. Rev. A 92, 022124 (2015)

    Article  ADS  Google Scholar 

  18. Winter, A., Yang, D.: Operational resource theory of coherence. Phys. Rev. Lett. 116, 120404 (2016)

    Article  ADS  Google Scholar 

  19. Zhao, Q., Liu, Y.C., Yuan, X., Chitambar, E., Ma, X.F: One-shot coherence dilution. Phys. Rev. Lett. 120, 070403 (2018)

    Article  ADS  Google Scholar 

  20. Du, S.P., Bai, Z.F., Qi, X.F.: Coherence manipulation under incoherent operations. Phys. Rev. A 100, 032313 (2019)

    Article  ADS  Google Scholar 

  21. Chitambar, E., Streltsov, A., Rana, S., Bera, M.N., Adesso, G., Lewenstein, M.: Assisted distillation of quantum coherence. Phys. Rev. Lett. 116, 070402 (2016)

    Article  ADS  Google Scholar 

  22. Streltsov, A., Rana, S., Bera, M.N., et al: Towards resource theory of coherence in distributed scenarios. Phys. Rev. X 7(1), 011024 (2017)

    Google Scholar 

  23. Morris, B., Lami, L., Adesso, G.: Assisted work distillation. Phys. Rev. Lett. 122, 130601 (2019)

    Article  ADS  Google Scholar 

  24. Zhao, M.J., Ma, T., Fei, S.M.: Coherence of assistance and regularized coherence of assistance. Phys. Rev. A 96, 062332 (2017)

    Article  ADS  Google Scholar 

  25. Zhao, M.J., Ma, T., Quan, Q., Fan, H., Pereira, R.: l1-norm coherence of assistance. Phys. Rev. A 100, 012315 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  26. Xiong, S.J., Sun, Z., Li, X., Su, Q.P., Xi, Z.J., Yu, L., Jin, J.S., et al: Experimental demonstration of one-shot coherence distillation: High-dimensional state conversions. arXiv:1911.08110 (2019)

  27. Fang, K., Wang, X., Lami, L., Regula, B., Adesso, G.: Probabilistic distillation of quantum coherence. Phys. Rev. Lett. 121, 070404 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  28. Regula, B., Fang, K., Wang, X., Adesso, G.: One-shot coherence distillation. Phys. Rev. Lett. 121, 010401 (2018)

    Article  ADS  Google Scholar 

  29. Liu, C.L., Zhou, D.L.: Deterministic coherence distillation. Phys. Rev. Lett. 123, 070402 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  30. Chen, S.R., Zhang, X.J., Zhou, Y., Zhao, Q.: One-shot coherence distillation with catalysts. Phys. Rev. A 100, 042323 (2019)

    Article  ADS  Google Scholar 

  31. Lami, L.: Completing the grand tour of asymptotic quantum coherence manipulation. IEEE Trans. Inf. Theory 66(4), 2165–2183 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  32. Regula, B., Narasimhachar, V., Buscemi, F., Gu, M.: Coherence manipulation with dephasing-covariant operations. Phys. Rev. Res. 2, 013109 (2020)

    Article  Google Scholar 

  33. Liu, C.L., Zhou, D.L.: Catalyst-assisted probabilistic coherence distillation for mixed states. Phys. Rev. A 101, 012313 (2020)

    Article  ADS  Google Scholar 

  34. Zhao, Q., Liu, Y.C., Yuan, X., Chitambar, E., Winter, A.: One-shot coherence distillation: towards completing the picture. IEEE Trans. Inf. Theory 65(10), 6441–6453 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  35. Vijayan, M.K., Chitambar, E., Hsieh, M.H.: One-shot assisted concentration of coherence. J. Phys. A: Math. Theor. 51(41), 414001 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  36. Yamasaki, H., Vijayan, M.K., Hsieh, M.H.: Hierarchy of quantum operations in manipulating coherence and entanglement. Quantum 5, 480 (2021)

    Article  Google Scholar 

  37. Regula, B., Lami, L., Streltsov, A.: Nonasymptotic assisted distillation of quantum coherence. Phys. Rev. A 98, 052329 (2018)

    Article  ADS  Google Scholar 

  38. Zhang, S.Y., Luo, Y., Shao, L.H., Xi, Z.J., Fan, H.: One-shot assisted distillation of coherence via one-way local quantum-incoherent operations and classical communication. Phys. Rev. A 102, 052405 (2020)

    Article  ADS  Google Scholar 

  39. Bromley, T.R., Cianciaruso, M., Adesso, G.: Frozen quantum coherence. Phys. Rev. Lett. 114, 210401 (2015)

    Article  ADS  Google Scholar 

  40. Yu, X.D., Zhang, D.J., Liu, C.L., Tong, D.M.: Measure-independent freezing of quantum coherence. Phys. Rev. A 93, 060303(R) (2016)

    Article  ADS  Google Scholar 

  41. Hu, M.L., Fan, H.: Quantum coherence of multiqubit states in correlated noisy channels. Sci. China Phys. Mech. Astron 63(03) (2020)

  42. Saxena, G., Chitambar, E., Gour, G.: Dynamical resource theory of quantum coherence. Phys. Rev. Res.h 2, 023298 (2020)

    Article  Google Scholar 

  43. Streltsov, A., Adesso, G., Plenio, M.B.: Colloquium: quantum coherence as a resource. Rev. Mod. Phys. 89, 041003 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  44. Hu, M.L., Hu, X.Y., Peng, Y., Zhang, Y.R., Fan, H.: Quantum coherence and quantum correlations. arXiv:1703.01852 (2017)

  45. Chitambar, E., Gour, G.: Quantum resource theories. Rev. Mod. Phys. 91, 025001 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  46. Cheng, S., Hall, M.J.W.: Complementarity relations for quantum coherence. Phys. Rev. A 92, 042101 (2015)

    Article  ADS  Google Scholar 

  47. Bera, M.N., Qureshi, T., Siddiqui, M.A., Pati, A.K.: Duality of quantum coherence and path distinguishability. Phys. Rev. A 92, 012118 (2015)

    Article  ADS  Google Scholar 

  48. Mondal, D., Datta, C., Sazim, S.: Quantum coherence sets the quantum speed limit for mixed states. Phys. Lett A 380(5) (2016)

  49. Shi, H.L., Liu, S.Y., Wang, X.H., Yang, W.L., Yang, Z.Y., Fan, H.: Coherence depletion in the Grover quantum search algorithm. Phys. Rev. A 95(3), 032307 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  50. Hayashi, M., Zhu, H.: Secure uniform random-number extraction via incoherent strategies. Phys. Rev. A 97, 012302 (2018)

    Article  ADS  Google Scholar 

  51. Hayashi, M., Fang, K., Wang, K.: Finite block length analysis on quantum coherence distillation and incoherent randomness Extraction. arXiv:2002.12004 (2020)

  52. Yadin, B., Ma, J., Girolami, D., Gu, M., Vedral, V.: Quantum processes which do not use coherence. Phys. Rev. X 6(4), 041028 (2016)

    Google Scholar 

  53. Chitambar, E., Gour, G.: Critical examination of incoherent operations and a physically consistent resource theory of quantum coherence. Phys. Rev. Lett. 117, 030401 (2016)

    Article  ADS  Google Scholar 

  54. Marvian, I., Spekkens, R.W.: How to quantify coherence: Distinguishing speakable and unspeakable notions. Phys. Rev. A 94, 052324 (2016)

    Article  ADS  Google Scholar 

  55. Aberg, J.: Quantifying superposition. arXiv:quant-ph/0612146

  56. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  57. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  MATH  Google Scholar 

  58. Wu, K.D., Hou, Z., Zhong, H.S., Yuan, Y., Xiang, G.Y., Li, C.F., Guo, G.C.: Experimentally obtaining maximal coherence via assisted distillation process. Optica 4(4), 454–459 (2017)

    Article  ADS  Google Scholar 

  59. Spehner, D., Orszag, M.: Geometric quantum discord with Bures distance. New J. Phys. 15, 103001 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. Spehner, D., Orszag, M.: Geometric quantum discord with Bures distance: The qubit case. J. Phys. A: Math. and Theor. 47(35302), 1 (2014)

    MathSciNet  MATH  Google Scholar 

  61. Luo, S. -L.: Quantum discord for two-qubit systems. Phys. Rev. A 77, 042303 (2008)

    Article  ADS  Google Scholar 

  62. Vedral, V., Plenio, M.B., Rippin, M.A., Knight, P.L.: Quantifying entanglement. Phys. Rev. Lett. 78, 2275 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  63. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgements

We thank Zheng-Jun Xi for useful discussion. This work is supported by the National Natural Science Foundation of China (Grants Nos. 61972048, 61976024, 61601171, and 11971151).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Su-Juan Qin.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, XL., Yue, QL., Yang, YH. et al. Assisted Coherence Distillation of Certain Mixed States. Int J Theor Phys 61, 34 (2022). https://doi.org/10.1007/s10773-022-05010-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-05010-3

Keywords

Navigation