Skip to main content
Log in

Designing of Parity Preserving Reversible Vedic Multiplier

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Reversible logic is used in designing low-power CMOS circuits, optical information processing, and quantum computing. Moreover, using parity preserving gates in reversible circuits provides additional reliability in error detection. In this paper, a new parity preserving reversible block is presented. Also a 2 × 2 parity preserving reversible Vedic multiplier circuit is proposed. Then a 4 × 4 parity preserving reversible Vedic multiplier is presented. Afterward, a reversible Vedic multiplier in n × n dimensions is presented. In fact, a circuit in various dimensions is presented in this section. Finally, a computational relation for the proposed circuit is obtained to calculate the quantum cost of the circuit in desired dimensions. The proposed reversible multiplier circuits are evaluated in 2 × 2 and 4 × 4 dimensions compared to existing reversible logic-based multiplier circuits. The quantum costs, the number of constant inputs and the number of garbage outputs are significantly decreased in the suggested reversible multiplier circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2:
Fig. 3:
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12.
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5(3), 183–191 (1961)

    Article  MathSciNet  Google Scholar 

  2. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17(6), 525–532 (1973)

    Article  MathSciNet  Google Scholar 

  3. Perkowski, M., Jozwiak, L., Kerntopf, P., Mishchenko, A., Al-Rabadi, A., Coppola, A., ... & Chrzanowska-Jeske, M. (2001). A general decomposition for reversible logic

  4. Perkowski, M., &Kerntopf, P. (2001). Reversible logic. Invited tutorial, proc, EURO-MICRO, Warsaw, Poland sept.

  5. Thapliyal, H., &Srinivas, M. B. (2005). A novel reversible TSG gate and its application for designing reversible carry look-ahead and other adder architectures. In Asia-Pacific conference on advances in computer systems architecture (pp. 805-817). Springer, Berlin, Heidelberg

  6. Kerntopf, P., Perkowski, M. A., & Khan, M. H. (2004). On universality of general reversible multiple-valued logic gates. In proceedings. 34th international symposium on multiple-valued logic (pp. 68-73). IEEE

  7. Islam, S., Islam, M.R.: Minimization of reversible adder circuits. Asian J Inform Technol. 4(12), 1146–1151 (2005)

    MathSciNet  Google Scholar 

  8. Thapar, S., Kaur, P., &Syal, N. (2012). Multiplier Circuit Based on Reversibility Principle. IRACST–Engineering Science and Technology: An International Journal (ESTIJ), ISSN, 2250–3498

  9. Peres, A.: Reversible logic and quantum computers. Phys. Rev. A. 32(6), 3266–3276 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  10. Shams, M., Haghparast, M., Navi, K.: Novel reversible multiplier circuit in nanotechnology. World Appl. Sci. J. 3(5), 806–810 (2008)

    Google Scholar 

  11. M. Islam, M. M. Rahman, Z. Begum, and M. Z. Hafiz, Fault tolerant reversible logic synthesis: carry look-ahead and carry skip adders. International Conference on Advances in Computational Tools for Engineering Applications (ACTEA), pp. 396–401, 2009

  12. Hagparast, M., Navi, K.: A novel fault tolerant reversible gate for nanotechnology based system. Am. J. Appl. Sci. 5(5), 519–523 (2008)

    Article  Google Scholar 

  13. Fredkin, E., Toffoli, T.: Conservative logic. Int. J. Theor. Phys. 21, 219–253 (1982)

    Article  MathSciNet  Google Scholar 

  14. Suresh Babu, K., Surendra, S.: Reversible ALU design using low power Vedic multiplier. Intl J Res Eng. 4, 107–113 (2017)

    Google Scholar 

  15. Haghparast, M., Jassbi, S. J., Navi, K., & Hashemipour, O. (2008). Design of a Novel Reversible Multiplier Circuit Using HNG Gate in Nanotechnology. In World Appl. Sci. J

  16. Thapliyal, H., Srinivas, M. B., &Arabnia, H. R. (2005). A reversible version of 4 x 4 bit Array multiplier with minimum gates and garbage outputs. In ESA (pp. 106-116)

  17. Parween, A. S., &Murugeswari, S. (2014). A Design of High Speed, area efficient, low power Vedic multiplier using reversible logic gate. Intl J Emerg Technol Adv Eng, 4(2)

  18. Thapliyal, H., &Srinivas, M. B. (2006). Novel reversible multiplier architecture using reversible TSG gate. arXiv preprint cs/0605004

  19. Haghparast, M., Shams, M.: A novel Nanometric parity preserving reversible Vedic multiplier. J Basic Appl Sci Res. 3(8), 771–776 (2013)

    Google Scholar 

  20. Ariafar, Z., Mosleh, M.: Effective designs of reversible vedic multiplier. Int. J. Theor. Phys. 58(8), 2556–2574 (2019)

    Article  MathSciNet  Google Scholar 

  21. A. Sahu, and A. K. Sahu, (2015) High speed fault tolerant reversible Vedic multiplier, international journal of innovative research in advanced engineering (IJIRAE), ISSN: 2349-2163 issue 6, volume 2

  22. Umrani and U Josh, N, Ashok Kumar. (2016), Design of Vedic Multiplier for High Speed, Low Power UsingOptimized Reversible Logic Gate, International Journal & Magazine of Engineering, Technology, Management and Research, ISSN NO:2348–4845

  23. Srikanth, G., & Kumar, N. S. (2014). Design of High speed low power reversible Vedic multiplier and reversible divider. Int. journal of engineering research and applications (IJERA)-Vol, 4

  24. Sonali S. Kothule, Govind, H. Bodvar. (2016). A Review on Vedic multiplier using reversible logicgate, International Journal of Innovative Research in Science Engineering and Technology (IJIRSET), Vol 5

  25. Ramya, A. S., Babu, B. R., Srikala, E., Pavan, M., Unita, P., &Swathi, A. V. S. (2017). Performance of Optimized Reversible Vedic Multipliers. In Computer Communication, Networking and Internet Security (Pp. 587–593). Springer, Singapore

  26. Sahu, A., Sahu, A.K.: Design of high speed 64x64 bit fault tolerant reversible Vedic multiplier. Intl Res J Eng Technol. 2(3), 880–887 (2015)

    Google Scholar 

  27. Ravi, JN., Vijay Prakash AM., Madan, S. (2018). Design and implementation of Vedic multipliers using reversible logic. J Electr Electron Syst, 2332–0796

  28. Sagar., K Suresh Babu., (2017). Design of low power Vedic multiplier Based on reversible logic. Int, journal of Engineering Research and Application (pp.73–78)

  29. PourAliAkbar. E., Navi. K., Haghparast. M, Reshadi. M, Novel Designs of Fast Parity-Preserving Reversible Vedic Multiplier, The CSI Journal on Computer Science and Engineering, Vol. 17, No. 1, Pages 9–20, 2019

  30. Shivarathnamma., G jyothi., M Z Kurian. (2016). A novel approach of 4 × 4 Vedic multiplier using reversible logic gates. International Journal of Advanced Networking & Applications (0975–0282)

  31. Sasamal, T.N., Gaur, H.M., Singh, A.K. and Mohan, A., 2020. Reversible circuit synthesis using evolutionary algorithms. In Design and Testing of Reversible Logic (pp. 115-128). Springer, Singapore

  32. Thakral, S. and Bansal, D., 2020. A novel reversible DSG gate and its quantum implementation. In International Conference on Intelligent Computing and Smart Communication 2019 (pp. 1443-1450). Springer, Singapore

  33. PourAliAkbar, E., Navi, K., Haghparast, M., Reshadi, M.: Novel optimum parity-preserving reversible multiplier circuits. Circ Syst Signal Process. 39(10), 5148–5168 (2020)

    Article  Google Scholar 

  34. Stava, M., A synthesis of reversible digital circuits to solve the Boolean satisfiability. In Proceedings of the Fourth International Conference on Microelectronics, Computing and Communication Systems (pp. 233-246). Springer, Singapore

  35. Bhattacharjee, A., Bandyopadhyay, C., Mondal, B. and Rahaman, H., 2020. A novel fault-detection scheme for nearest-neighbor-based reversible circuits. In Soft Computing: Theories and Applications (pp. 489-500). Springer, Singapore

  36. Lee, J., Ye, Y.H., Huang, X., Yang, R.L.: Binary-decision-diagram-based decomposition of Boolean functions into reversible logic elements. Theor. Comput. Sci. 814, 120–134 (2020)

    Article  MathSciNet  Google Scholar 

  37. Zhou, R.-G., Li, Y.-C., Zhang, M.-Q.: Novel designs for fault tolerant reversible binary coded decimal adders. Int. J. Electron. 101(10), 1336–1356 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Haghparast.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rashno, M., Haghparast, M. & Mosleh, M. Designing of Parity Preserving Reversible Vedic Multiplier. Int J Theor Phys 60, 3024–3040 (2021). https://doi.org/10.1007/s10773-021-04903-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-021-04903-z

Keywords

Navigation