Skip to main content
Log in

Quantum Mutual Authentication Key Agreement Scheme Using Five-Qubit Entanglement towards Different Realm Architecture

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper, we propose a scheme of quantum operation teleportation (QOT) utilizing local operations and five-qubit entangled state to achieve mutual authentication and key agreement for two clients in different realms. On the one hand, the scheme not only has the characteristics of the arbitrariness of the relevant operation, the certainty of sharing success and the constancy of entangled resources, but also realizes the mutual authentication among the four parties, ensuring the reliability and security of the task. On the other hand, considering the complexity of the operation, we complete the current QOT task as a whole, so the operation difficulty is low and relatively simple. In summary, our analysis is completely feasible under the existing technical conditions and this proposed scheme has practical significance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Saha, D., Panigrahi, P.K.: N-qubit quantum teleportation, information splitting and superdense coding through the composite GHZ-bell channel. Quantum Inf. Process. 11, 615–628 (2012)

    Article  MathSciNet  Google Scholar 

  2. Hou, K., Bao, D.Q., Zhu, C.J., Yang, Y.P.: Controlled teleportation of an arbitrary two-qubit entanglement in noises environment. Quantum Inf. Process. 18, 104 (2019)

    Article  ADS  Google Scholar 

  3. Zhang, Z.J., Li, Y., Man, Z.X.: Multiparty quantum secret sharing. Phys. Rev. A. 71, 044301 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  4. Chen, X., Jiang, M., Chen, X.P., Li, H.: Quantum state sharing of an arbitrary three-qubit state by using three sets of W-class states. Quantum Inf. Process. 12, 2405–2416 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  5. Xiu, X.M., Dong, L., Gao, Y.J., Chi, F.: Quantum key distribution protocols with six-photon states against collective noise. Opt. Commun. 282, 4171–4174 (2009)

    Article  ADS  Google Scholar 

  6. Tsai, C.W., Yang, C.W.: Cryptanalysis and improvement of the semi-quantum key distribution robust against combined collective noise. Int. J. Theor. Phys. 58, 2244–2250 (2019)

    Article  Google Scholar 

  7. Wang, Z.Y., Wang, D., Han, L.F.: Optimal remote preparation of a four-qubit entangled cluster-type state via two non-maximally entangled GHZ-type states. Int. J. Theor. Phys. 55, 4371–4383 (2016)

    Article  Google Scholar 

  8. Wei, J.H., et al.: Deterministic joint remote preparation of arbitrary multi-qubit states via three-qubit entangled states. Quantum Inf. Process. 18, 237 (2019)

    Article  ADS  Google Scholar 

  9. Yadav, P., Srikanth, R., Pathak, A.: Two-step orthogonal-state-based protocol of quantum secure direct communication with the help of order-rearrangement technique. Quantum Inf. Process. 13, 2731–2743 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  10. He, Y.F., Ma, W.P.: Multiparty quantum secure direct communication immune to collective noise. Quantum Inf. Process. 18, 4 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  11. Huelga, S.F., Vaccaro, J.A., Chefles, A.: Quantum remote control: teleportation of unitary operations. Phys. Rev. A. 63, 042303 (2001)

    Article  ADS  Google Scholar 

  12. Zhang, Z.J., Cheung, C.Y.: Shared quantum remote control: quantum operation sharing. J. Phys. B. 44, 165508 (2011)

    Article  ADS  Google Scholar 

  13. Peng, J.: Tripartite operation sharing with a six-particle maximally entangled state. Quantum Inf. Process. 14, 4255–4262 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  14. Zhou, S.Q., Bai, M.Q., Zhang, C.Y.: Analysis and construction of four-party deterministic operation sharing with a generalized seven-qubit Brown state. Mod. Phys. Lett. B. 31, 1750190 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  15. Wang, A.M.: Remote implementations of partially unknown quantum operations of multiqubits. Phys. Rev. A. 74, 032317 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  16. Zhao, N.B., Wang, A.M.: Hybrid protocol of remote implementations of quantum operations. Phys. Rev. A. 76, 062317 (2007)

    Article  ADS  Google Scholar 

  17. Xing, H., Liu, D.C., Xing, P.F., Xie, C.M., Liu, X.S., Zhang, Z.J.: Deterministic tripartite sharing of eight restricted sets of single-qubit operations with two bell states or a GHZ state. Int. J. Quantum Inf. 12, 1450012 (2014)

    Article  MathSciNet  Google Scholar 

  18. Ji, Q.B., Liu, Y.M., Yin, X.F., Liu, X.S., Zhang, Z.J.: Quantum operation sharing with symmetric and asymmetric W states. Quantum Inf. Process. 12, 2453–2464 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  19. Ji, Q.B., Liu, Y.M., Xie, C.M., Yin, X.F., Zhang, Z.J.: Tripartite quantum operation sharing with two asymmetric three-qubit W states in five entanglement structures. Quantum Inf. Process. 13, 1659–1676 (2014)

    Article  ADS  Google Scholar 

  20. Xing, H.: Four-party deterministic operation sharing with six-qubit cluster state. Quantum Inf. Process. 13, 1553–1562 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  21. Duan, Y.J., Zha, X.W.: Remotely sharing a single-qubit operation via a six-qubit entangled state. Int. J. Theor. Phys. 54, 877–883 (2015)

    Article  Google Scholar 

  22. Ji, Q.B., Liu, Y.M., Liu, X.S., Yin, X.F., Zhang, Z.J.: Single-Qubit operation sharing with bell and W product states. Commun. Theor. Phys. 60, 165–170 (2013)

    Article  ADS  Google Scholar 

  23. Brown, I.D.K., Stepney, S., Sudbery, A., Braunstein, S.L.: Searching for highly entangled multi-qubit states. J. Phys. A. 38, 1119–1131 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  24. Yuan, H., Zhang, W.B., Yin, X.F.: T simplistic quantum operation sharing with a five-qubit genuinely entangled state. Quantum Inf. Process. 19, 122 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  25. Ye, B.L., Liu, Y.M., Liu, X.S., Zhang, Z.J.: Remotely sharing a single-qubit operation with a five-qubit genuine state. Chin. Phys. Lett. 30, 020301 (2013)

    Article  ADS  Google Scholar 

  26. Peng, J.: Tripartite operation sharing with five-qubit Brown state. Quantum Inf. Process. 15, 2465–2473 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  27. Deng, F.G., Zhou, H.Y., Long, G.L.: Bidirectional quantum secret sharing and secret splitting with polarized single photons. Phys. Lett. A. 337, 329–334 (2005)

    Article  ADS  Google Scholar 

  28. Zhang, Z.J., et al.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A. 72, 044302 (2005)

    Article  ADS  Google Scholar 

  29. Xiao, L., Long, G.L., et al.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A. 69, 052307 (2004)

    Article  ADS  Google Scholar 

  30. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A. 65, 032302 (2002)

    Article  ADS  Google Scholar 

  31. Zhou, P., Li, X.H., et al.: Multiparty quantum secret sharing with pure entangled states and decoy photons. Chin. Phys. Lett. 22, 1049 (2005)

    Article  ADS  Google Scholar 

  32. Li, C.Y., Li, X.H., et al.: Efficient quantum cryptography network without entanglement and quantum memory. Chin. Phys. Lett. 23, 2896 (2006)

    Article  ADS  Google Scholar 

  33. Single-Qubit Operation Sharing with Bell and W Product States[J]. Communications in Theoretical Physics, 60(2), 165–170 (2013)

  34. Ji, Q., Liu, Y., Yin, X., Liu, X., Zhang, Z.: Quantum operation sharing with symmetric and asymmetric W states[J]. Quantum Inf. Process. 12(7), 2453–2464 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  35. Yuan H , Zhang W B, Yin X F. Simplistic quantum operation sharing with a five-qubit genuinely entangled state. Quantum Inf Process 19, 122 (2020)

Download references

Acknowledgements

This work was supported by the Liaoning Provincial Natural Science Foundation of China (Grant No. 2019-MS-286), and Basic Scientific Research Project of Liaoning Provincial Department of Education (Grant No. LJC202007). Construction of professional practice conditions and practice bases about electronic information engineering (industrial Internet of things) under the background of new engineering (School-Enterprise Cooperation) Major under the New Engineering Background (Grant No. 202002133020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongfeng Zhu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Hur, J., Li, Z. et al. Quantum Mutual Authentication Key Agreement Scheme Using Five-Qubit Entanglement towards Different Realm Architecture. Int J Theor Phys 60, 1933–1948 (2021). https://doi.org/10.1007/s10773-021-04812-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-021-04812-1

Keywords

Navigation