Skip to main content
Log in

Comment on “Quantum Controlled Teleportation of Bell State Using Seven-Qubit Entangled State”

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Recently, Chen et al. [Int. J. Theor. Phys. 59, 1402–1412 (2020)] proposed a theoretical scheme for controlled quantum teleportation (CQT) of a Bell state by using seven-qubit entangled state as a quantum channel. In this comment, it is shown that the consumption of both the quantum and classical resources used by Chen et al. is excessively high because the actual task of CQT of a Bell state via seven-qubit entangled state can be reduced to the CQT of an arbitrary single-qubit state via three-qubit GHZ state. Hence, in this work, an improved scheme for CQT has been presented. We have also shown that the CQT of certain class of N-qubit entangled state can also be realized successfully by using a three-qubit GHZ state as the quantum channel. The intrinsic efficiency of the present communication scheme is very large as compared to that proposed by Chen et al.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    ADS  MathSciNet  MATH  Google Scholar 

  2. Yang, C.P., Guo, G.C.: Multiparticle generalization of teleportation. Chin. Phys. Lett. 17, 162–164 (2000)

    Article  ADS  Google Scholar 

  3. Prakash, H., Chandra, N., Prakash, R., Dixit, A.: A generalized condition for teleportation of the quantum state of an assembly of N two-level system. Mod. Phys. Lett. B. 21, 2019–2023 (2007)

    Article  ADS  Google Scholar 

  4. Bandyopadhyay, S., Sanders, B.C.: Quantum teleportation of composite system via mixed entangled states. Phys. Rev. A. 74, 032310 (2006)

    Article  ADS  Google Scholar 

  5. Cheung, C.Y., Zhang, Z.J.: Criterion for faithful teleportation with an arbitrary multiparticle channel. Phys. Rev. A. 80, 022327 (2009)

    Article  ADS  Google Scholar 

  6. Zhao, M.J., Li, Z.G., Fei, S.M., Wang, Z.X., Li-Jost, X.: Faithful teleportation with arbitrary pure or mixed resource states. J. Phys. A Math. Theor. 44, 215302 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  7. Prakash, H., Verma, V.: Minimum assured fidelity and minimum average fidelity in quantum teleportation of single qubit using non-maximally entangled states. Quantum Inf. Process. 11, 1951–1959 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  8. Rigolin, G.: Quantum teleportation of an arbitrary two-qubit state and its relation to multipartite entanglement. Phys. Rev. A. 71, 032303 (2005)

    Article  ADS  Google Scholar 

  9. Deng, F.G.: Comment on “quantum teleportation of an arbitrary two-qubit state and its relation to multipartite entanglement”. Phys. Rev. A. 72, 036301 (2005)

    Article  ADS  Google Scholar 

  10. Ikram, M., Zhu, S.Y., Zubairy, M.S.: Quantum teleportation of an entangled state. Phys. Rev. A. 62, 022307 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  11. Meng, Q., Sheng-Long, X., Xiao-Yue, Z.: Standard teleportation of one-qubit state and partial teleportation of two-qubit state via X-state. Commun. Theor. Phys. 57, 201–204 (2012)

    Article  ADS  Google Scholar 

  12. Verma, V., Prakash, H.: Standard quantum teleportation and controlled quantum teleportation of arbitrary N Qubit information state. Int. J. Theor. Phys. 55, 2061–2070 (2016)

    Article  Google Scholar 

  13. Karlson, A., Bourennane, M.: Quantum teleportation using three-particle entanglement. Phys. Rev. A. 58, 4394–4400 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  14. Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A. 59, 1829–1834 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  15. Dong, J., Teng, J.F.: Controlled teleportation of an arbitrary n-qudit state using nonmaximally entangled GHZ states. Eur. Phys. J. D. 49, 129–134 (2008)

    Article  ADS  Google Scholar 

  16. Yan, F., Wang, D.: Probabilistic and controlled teleportation of unknown quantum states. Phys. Lett. A. 316, 297–303 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  17. Yang, C.P., Chu, S.I., Han, S.: Efficient many-party controlled teleportation of multiqubit quantum information via entanglement. Phys. Rev. A. 70, 022329 (2004)

    Article  ADS  Google Scholar 

  18. Bouwmeester, D., Pan, J.W., Mattle, K., Ebil, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature. 390, 575–579 (1997)

    Article  ADS  Google Scholar 

  19. Boschi, D., Branca, S., Martini, F.D., Hardy, L., Popescu, S.: Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 80, 1121–1125 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  20. Furusawa, A., Sorensen, J.L., Braunstein, S.L., Fuchs, C.A., Kimble, H.J., Polzik, E.S.: Unconditional Quantum Teleportation. Science. 282, 706–709 (1998)

    Google Scholar 

  21. Nielsen, M.A., Knill, E., Laflamme, R.: Complete quantum teleportation using nuclear magnetic resonance. Nature. 396, 52–55 (1998)

    Article  ADS  Google Scholar 

  22. Kim, Y.H., Kulik, S.P., Shih, Y.: Quantum teleportation of a polarization state with a complete bell state measurement. Phys. Rev. Lett. 86, 1370–1373 (2001)

    Article  ADS  Google Scholar 

  23. Riebe, M., Häffner, H., Roos, C.F., Hänsel, W., Benhelm, J., Lancaster, G.P.T., Körber, T.W., Becher, C., Schmidt-Kaler, F., James, D.F.V., Blatt, R.: Deterministic quantum teleportation with atoms. Nature. 429, 734–737 (2004)

    Article  ADS  Google Scholar 

  24. Chen, J., Li, D., Liu, M., Yang, Y., Zhou, Q.: Quantum controlled teleportation of bell state using seven-qubit entangled state. Int. J. Theor. Phys. 59, 1402–1412 (2020)

    Article  MathSciNet  Google Scholar 

  25. Yuan, H., Liu, Y.M., Zhang, W., Zhang, Z.J.: Optimizing resource consumption, operation complexity and efficiency in quantum-state sharing. J. Phys. B: At. Mol. Phys. 41, 145506 (2008)

    Article  ADS  Google Scholar 

  26. Chen, J., Li, D., Liu, M., Yang, Y.: Bidirectional quantum teleportation by using a four-Qubit GHZ state and two bell states. IEEE Access. 8, 28925–28933 (2020)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Dr. Rakesh Kumar and Dr. Archana Verma for their kind help, valuable comments and useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay K. Yadav.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, V., Yadav, A.K. Comment on “Quantum Controlled Teleportation of Bell State Using Seven-Qubit Entangled State”. Int J Theor Phys 60, 348–354 (2021). https://doi.org/10.1007/s10773-020-04697-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-020-04697-6

Keywords

Navigation