Skip to main content
Log in

Quantum Codes Derived from One-Generator Quasi-Cyclic Codes with Hermitian Inner Product

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper, we consider a family of one-generator quasi-cyclic codes and their applications in quantum codes construction. We give a sufficient condition for self-orthogonality with respect to Hermitian inner product. By virtue of the well-known MacWilliams equations, some binary and ternary stabilizer quantum codes with good parameters are constructed. Furthermore, we present a lower bound on the Hermitian dual distance of these involved codes. As the computational results, some good stabilizer quantum codes over small finite fields are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aydin, N., Ray-Chaudhuri, D.K.: Quasi-cyclic codes over \(\mathbb {Z}_{4}\) and some new binary codes. IEEE Trans. Inf. Theory 48, 2065–2069 (2002)

    Article  MathSciNet  Google Scholar 

  2. Ashikhmin, A., Knill, E.: Nonbinary quantum stabilizer codes. IEEE Trans. Inf. Theory 47(7), 3065–3072 (2001)

    Article  MathSciNet  Google Scholar 

  3. Bosma, W., Cannon, J., Playoust, C.: The MAGMA algebra system I: The user language. J. Symb. Comput. 24, 235–265 (1997)

    Article  MathSciNet  Google Scholar 

  4. Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.A.: Quantum error correction via GF(4). IEEE Trans. Inf. Theory 44(4), 1369–1387 (1998)

    Article  MathSciNet  Google Scholar 

  5. Daskalov, R., Hristov, P.: New binary one-generator quasi-cyclic codes. IEEE Trans. Inf. Theory 49, 3001–3005 (2003)

    Article  MathSciNet  Google Scholar 

  6. Edel, Y.: Table of quantum twisted codes. Electronic address: http://www.mathi.uni-heidelberg.de/yves/matritzen/QTBCH/QTBCHIndex.html. (Accessed 7 July 2019)

  7. Feng, K., Cheng, H.: Quantum Error-Correcting Codes. Science Press, Beijing (2010)

    Google Scholar 

  8. Feng, K., Ma, Z.: A finite GilbertCVarshamov bound for pure stabilizer quantum codes. IEEE Trans. Inf. Theory 50, 3323–3325 (2004)

    Article  Google Scholar 

  9. Fossorier, M.P.C.: Quasi-cyclic low-density parity-check codes from circulant permutation matrices. IEEE Trans. Inf. Theory 50, 1788–1793 (2004)

    Article  MathSciNet  Google Scholar 

  10. Galindo, C., Hernando, F., Mastsumoto, R.: Quasi-cyclic constructions of quantum. Finite Fields Appl. 52, 261–280 (2018)

    Article  MathSciNet  Google Scholar 

  11. Gao, J.: Some results on linear codes over \(\mathbb {F}_{p}+u\mathbb {F}_{p}+u^{2}\mathbb {F}_{p}\). J. Appl. Math. Comput. 47(1-2), 473–485 (2015)

    Article  MathSciNet  Google Scholar 

  12. Gao, J.: Quantum codes from cyclic codes over \(\mathbb {F}_{q}+v\mathbb {F}_{q}+v^{2}\mathbb {F}_{q}+v^{3}\mathbb {F}_{q}\). Int. J. Quantum Inf. 13(8), 757–766 (2015)

    Article  ADS  Google Scholar 

  13. Gao, J., Wang, Y.K.: Quantum codes derived from negacyclic codes. Int. J. Theor. Phys., https://doi.org/10.1007/s10773-017-3599-9 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  14. Gottesman, D.: Stabilizer codes and quantum error correction. Ph.D. Thesis. California Institute of Technology (1977)

  15. Grassl, M.: Codetables. electronic address: http://www.codetables.de/. (Accessed 7 July 2019)

  16. Hagiwara, M., Kasai, K., Imai, H., Sakaniwa, K.: Spatially-coupled quasi-cyclic quantum LDPC codes. In: Proc. 2011 IEEE ISIT, pp. 638–642. Nice (2007)

  17. Kai, X., Zhu, S., Tang, Y.: Quantum negacyclic codes. Phys. Rev. A 88 (1), 012326(1-5) (2013)

    Article  ADS  Google Scholar 

  18. Kasami, T.: A Gilber-Vashamov bound for quasi-cyclic codes of rate \(\frac {1}{2}\). IEEE Trans. Inf. Theory 20, 679 (2008)

    Article  Google Scholar 

  19. Ketkar, A., Klappenecker, A., Kumar, S.: Nonbinary stabilizier codes over finite fields. IEEE Trans. Inf. Theory 52, 4892–4914 (2006)

    Article  Google Scholar 

  20. La Guardia, G.G.: Quantum codes derived from cyclic codes. Int. J. Theor. Phys., https://doi.org/10.1007/s10773-017-3399-2 (2017)

    Article  ADS  Google Scholar 

  21. Lally, K., Fitzpatrick, P.: Algebraic structure of quasicyclic codes. Discret. Appl. Math. 11, 157–175 (2001)

    Article  MathSciNet  Google Scholar 

  22. Ling, S., Luo, J., Xing, C.: Generalization of Stean’s enlargement construction of quantun codes and applications. IEEE Trans. Inf. Theory 56, 4080–4084 (2008)

    Article  Google Scholar 

  23. Ling, S., Solé, P.: Good self-dual qausi-cyclic codes exist. IEEE Trans. Inf. Theory 49, 1052–1053 (2003)

    Article  Google Scholar 

  24. Ma, F.H., Gao, J., Fu, F.W.: Constacyclic codes over the ring \({\mathbb F}_{q}+v{\mathbb F}_{q}+v^{2}{\mathbb F}_{q}\) and their applications of constructing new non-binary quantum codes. Quantum Inf. Process. 17(6), 1–19 (2018)

    Article  Google Scholar 

  25. MacWilliams, F.J., Sloane, N.J.A.: The theory of error correcting codes. Amsterdam, The Netherlands: North-Holland. Math. Library, 16 (1996)

  26. Qian, J., Ma, W., Gou, W.: Quantum codes from cyclic codes over finite ring. Int. J. Quantum Inf. 7(6), 1277–1283 (2009)

    Article  Google Scholar 

  27. Qian, J., Ma, W., Wang, X.: Quantum error-correcting codes from quasi-cyclic codes. Int. J. Quantum Inf. 6(6), 1263–1269 (2008)

    Article  Google Scholar 

  28. Qian, J., Zhang, L.: Improved constructions for nonbinary quantum BCH codes. Int. J. Theor. Phys., https://doi.org/10.1007/s10773-017-3277-y (2017)

    Article  ADS  MathSciNet  Google Scholar 

  29. Séguin, G.E., Drolet, G.: The Theory of 1-Generator Quasi-Cyclic Codes. Technical Reports, Department of Electrical and Computer Engineering, Royal Military College, Kingston (1990)

  30. Séguin, G.E.: A class of 1-generator quasi-cyclic codes. IEEE Trans. Inf. Theory 50, 1745–1753 (2004)

    Article  MathSciNet  Google Scholar 

  31. Shor, P.W.: Scheme for reducing decoherence in quantum memory. Phys. Rev. A 52(4), 2493–2496 (1995)

    Article  ADS  Google Scholar 

  32. Siap, I., Aydin, N., Ray-Chaudhuri, D.K.: New ternary quasi-cyclic codes with better minimum distances. IEEE Trans. Inf. Theory 46, 1554–1558 (2000)

    Article  MathSciNet  Google Scholar 

  33. Steane, A.: Multiple-particle interference and quantum error correction. Proc. R. Soc. A Math. Phys. Eng. Sci. 452(1954), 2551–2577 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  34. Tanner, R.M.: Towards algebraic theory of Turbo codes. In: Proceedings of 2nd International Symposium on Turbo codes, pp. 17–26. Brest (2000)

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China (Nos.11471011, 11801564) and Natural Science Foundation of Shaanxi (No.2017JQ1032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruihu Li.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, J., Li, R. & Wang, J. Quantum Codes Derived from One-Generator Quasi-Cyclic Codes with Hermitian Inner Product. Int J Theor Phys 59, 300–312 (2020). https://doi.org/10.1007/s10773-019-04324-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04324-z

Keywords

Navigation