Skip to main content
Log in

Improving Parameters Precision of Quantum Estimation by Homodyne-Based Feedback Control

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper, we investigate the improvement of quantum Fisher information (QFI) of a single-qubit system coupled to a common reservoir by homodyne-based feedback control. It is shown that by controlling the polar parameter of the initial quantum state, one may improve the quantum Fisher information of the estimated parameters. By comparing the effects of different feedback control types on QFI, we find that under the homodyne-based feedback control, when the feedback Hamiltonian is selected as λσx, the estimation precision of feedback parameters and dissipation coefficient can be improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum metrology. Phys. Rev. Lett.96(1), 010401 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  2. Bollinger, J.J., Itano, W.M., Wineland, D.J., Heinzen, D.J.: Optimal frequency measurements with maximally correlated states. Phys. Rev. A. 54(6), R4649 (1996)

    Article  ADS  Google Scholar 

  3. Huelga, S.F., Macchiavello, C., Pellizzari, T., Ekert, A.K., Plenio, M.B., Cirac, J.I.: Improvement of frequency standards with quantum entanglement. Phys. Rev. Lett.79(20), 3865–3868 (1997)

    Article  ADS  Google Scholar 

  4. Taylor, J.M., Cappellaro, P., Childress, L., Jiang, L., Budker, D., Hemmer, P.R., Yacoby, A., Walsworth, R., Lukin, M.D.: High-sensitivity diamond magnetometer with nanoscale resolution. Nat. Phys. 4, 810–816 (2008)

    Article  Google Scholar 

  5. Xiao, X., Yao, Y., Zhong, W.J., Li, Y.L., Xie, Y.M.: Enhancing teleportation of quantum Fisher information by partial measurements. Phys. Rev. A. 93(1), 012307 (2016)

  6. Fisher, R.A.: Theory of statistical estimation. Math. Proc. Camb. Philos. Soc. 22(5), 700–725 (1925)

    Article  ADS  Google Scholar 

  7. Zheng, Q., Yao, Y., Li, Y.: Optimal quantum channel estimation of two interacting qubit subject to decoherence. Eur. Phys. J. D. 68, 170 (2014)

  8. Ozaydin, F.: Quantum Fisher information of W States in Decoherence channels. Phys. Lett. A. 378(43), 3161–3164 (2014)

  9. Li, Y.L., Xiao, X., Yao, Y.: Classical-driving-enhanced parameter-estimation precision of a non-Markovian dissipative two-state system. Phys. Rev. A. 91(5), 052105 (2015)

  10. Stefanatos, D.: Optimal shortcuts to adiabaticity for a quantum piston. Automatica. 49(10), 3079–3083 (2013)

    Article  MathSciNet  Google Scholar 

  11. Dong, D., Petersen, I.R.: Sliding mode control of quantum systems. New J. Phys. 11(10), 105033 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  12. Ji, Y.H., Hu, J.J., Ke, Q.: Lyapunov-based states transfer for open system with superconducting qubits. Int. J. Control. Autom. Syst. 16(1), 55–61 (2018)

    Article  Google Scholar 

  13. Kuang, S., Cong, S.: Lyapunov control methods of closed quantum systems. Automatica. 44(1), 98–108 (2008)

    Article  MathSciNet  Google Scholar 

  14. James, M.R.: Risk-sensitive optimal control of quantum systems. Phys. Rev. A. 69(3), 032108 (2004)

  15. Gammelmark, S., Molmer, K.: Bayesian parameter inference from continuously monitored quantum systems. Phys. Rev. A. 87(3), 032115 (2013)

  16. Yamamoto, N.: Parametrization of the feedback Hamiltonian realizing a pure steady state. Phys. Rev. A. 72(2), 024104 (2005)

    Article  ADS  Google Scholar 

  17. Zhang, J., Wu, R.B., Li, C.W., Tarn, T.J.: Protecting coherence and entanglement by feedback controls. IEEE Transactions on Automation Control. 55(3), 619–633 (2010)

    Article  MathSciNet  Google Scholar 

  18. Qi, B., Pan, H., Guo, L.: Further results on stabilizing control of quantum systems. IEEE Trans. Autom. Control. 58(5), 1349–1354 (2013)

    Article  Google Scholar 

  19. Zhang, J., Liu, Y.X., Wu, R.B., Jacobs, K., Nori, F.: Quantum feedback: theory, experiments, and applications. Phys. Rep. 679, 1–60 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  20. Mirrahimi, M., Handel, R.V.: Stabilizing feedback controls for quantum systems. SIAM J. Control. Optim. 46(2), 445–467 (2007)

    Article  MathSciNet  Google Scholar 

  21. Braunstein, S.L., Caves, C.M.: Statistical distance and the geometry of quantum states. Phys. Rev. Let. 72(22), 3439–3443 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  22. Dittmann, J.: Explicit formulae for the Bures metric. J. Phys. A. 32(14), 2663–2667 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  23. Zhong, W., Sun, Z., Ma, J., Wang, X.G., Nori, F.: Fisher information under decoherence in Bloch representation. Phys. Rev. A. 87(2), 022337 (2013)

    Article  ADS  Google Scholar 

  24. Berrada, K.: Non-Markovian Effect on the Precision of Parameter Estimation. Phys. Rev. A. 88(3), 035806 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by Foundation of Science and Technology of Education office of Jiangxi province under Grant No. GJJ170449 and by the National Natural Science Foundation of China under Grant No. 61663016 and 11264015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huangyun Rao.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, H. Improving Parameters Precision of Quantum Estimation by Homodyne-Based Feedback Control. Int J Theor Phys 59, 125–133 (2020). https://doi.org/10.1007/s10773-019-04298-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04298-y

Keywords

Navigation