Skip to main content
Log in

Strong Privacy-preserving Two-party Scalar Product Quantum Protocol

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Under the assumption that the parties do not change their private inputs during the whole protocol execution, we present a probabilistic quantum protocol for secure two-party scalar product without the help of any third party, which can ensure the security of the strong privacy of two parties. Especially, the communication complexity of this protocol achieves O(1), and thus it is more suitable for applications with big data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. P. W. Shor. Algorithms for Quantum Computation – Discrete Logarithms and Factoring. Proceedings of 35th Annual Symposium on the Foundations of Computer Science (IEEE, New York, 1994), pp. 124-134.

  2. L. K. Grover. A fast quantum mechanical algorithm for database search. Proceedings of 28th Annual ACM Symposium on Theory of Computing (ACM, New York, 1996), pp. 212-219.

  3. C.H. Bennett & G. Brassard. Quantum Cryptography: Public Key Distribution and Coin Tossing. Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India (IEEE, New York, 1984), pp. 175-179.

  4. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an Unknown Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  5. Qin, H., Tang, W.K.S., Tso, R.: Rational quantum secret sharing. Sci. Rep.8, 11115 (2018)

    Article  ADS  Google Scholar 

  6. Lo, H.K.: Insecurity of quantum secure computations. Phys. Rev. A. 56, 1154 (1997)

    Article  ADS  Google Scholar 

  7. Colbeck, R.: Impossibility of secure two-party classical computation. Phys. Rev. A. 76, 062308 (2007)

    Article  ADS  Google Scholar 

  8. Buhrman, H., Christandl, M., Schaffner, C.: Complete Insecurity of Quantum Protocols for Classical Two-Party Computation. Phys. Rev. Lett. 109, 160501 (2012)

    Article  ADS  Google Scholar 

  9. Shi, R.H., Mu, Y., Zhong, H., et al.: Quantum oblivious set-member decision protocol. Phys. Rev. A. 92(2), 022309 (2015)

    Article  ADS  Google Scholar 

  10. Shi, R.H., Mu, Y., Zhong, H., et al.: Quantum private set intersection cardinality and its application to anonymous authentication. Inf. Sci.370-371, 147–158 (2016)

    Article  Google Scholar 

  11. He, L., Huang, L., Yang, W., X, R.: A protocol for the secure two-party quantum scalar product. Phys. Lett. A. 376, 1323–1327 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  12. Y. Wang, G. He. Quantum secure scalar product with continuous-variable clusters. Proceedings of the 18th AQIS Conference (8-12 September 2018, Nagoya, Japan). Available at http://www.ngc.is.ritsumei.ac.jp/~ger/static/AQIS18/OnlineBooklet/161.pdf (2018).

  13. Shi, R.H., Mu, Y., Zhong, H., et al.: Secure Multiparty Quantum Computation for Summation and Multiplication. Sci. Rep.6(19655), (2016)

  14. A. Majumder, S. Mohapatra, A. Kumar. Experimental Realization of Secure Multiparty Quantum Summation Using Five-Qubit IBM Quantum Computer on Cloud. arXiv:1707.07460v3 (2017).

  15. He, G.P.: Practical quantum oblivious transfer with a single photon. Laser Phys.29(3), 035201 (2019)

    Article  ADS  Google Scholar 

  16. G. Brassard, P. Høyer, and A. Tapp. Quantum Counting. Proceedings of 25th International Colloquium on Automata, Languages and Programming, LNCS 1443 (Springer-Verlag, Berlin Heidelberg, 1998), pp. 820-831.

  17. Mosca, M.: Counting by quantum eigenvalue estimation. Theor. Comput. Sci. 264, 139 (2001)

    Article  MathSciNet  Google Scholar 

  18. Diao, Z.J., Huang, C.F., Wang, K.: Quantum Counting: Algorithm and Error Distribution. Acta. Appl. Math. 118, 147 (2012)

    Article  MathSciNet  Google Scholar 

  19. A. Holevo. Probabilistic and Statistical Aspects of Quantum Theory. Publications of the Scuola Normale Superiore, Springer, 2011.

  20. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

Download references

Acknowledgment

This work was supported by National Natural Science Foundation of China (No.61772001 and 61672010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingwu Zhang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Rh., Zhang, M. Strong Privacy-preserving Two-party Scalar Product Quantum Protocol. Int J Theor Phys 58, 4249–4257 (2019). https://doi.org/10.1007/s10773-019-04296-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04296-0

Keywords

Navigation