Skip to main content
Log in

A New Multi-Party Quantum Private Comparison Protocol Based on Circle Model

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Recently multi-party quantum private comparison (MQPC) has attracted more and more attentions in the research of quantum cryptography. In our paper, a new MQPC protocol has been proposed by encoding the compared secrets on the phase of n-level single photons. From the proposed protocol, a generic model named circle model can be summarized. With the help of a semi-honest third party (TP), it can be proved that our protocol is immune to the outside attack and dishonest participants’ (including TP) attack.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. Theor. Comput. Sci. 175, 175–179 (1984)

    MathSciNet  MATH  Google Scholar 

  2. Zhang, K.J., Jia, H.Y.: Cryptanalysis of a quantum proxy weak blind signature scheme. Int. J. Theor. Phys. 54(2), 582–588 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Zhang, K.J., Zhang, W.W., Li, D.: Improving the security of arbitrated quantum signature against the forgery attack. Quantum Inf. Process 12(8), 2655–2669 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Zhang, L., Sun, H.W., Zhang, K.J., et al.: An improved arbitrated quantum signature protocol based on the key-controlled chained CNOT encryption. Quantum Inf. Process. 16(3), 70 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Zhang, L., Sun, H.W., Zhang, K.J., et al.: The security problems in some novel arbitrated quantum signature protocols. Int. J. Theor. Phys. 56(8), 2433–2444 (2017)

    Article  ADS  MATH  Google Scholar 

  6. Zeng, G., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A 65(4), 042312 (2002)

    Article  ADS  Google Scholar 

  7. Wang, T.Y., Cai, X.Q., Zhang, R.L.: Security of a sessional blind signature based on quantum cryptograph. Quantum Inf. Process 13(8), 1677–1685 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Wang, T.Y., Cai, X.Q., Ren, Y.L., Zhang, R.L.: Security of quantum digital signatures for classical messages. Sci. Rep. 5, 9231 (2015)

    Article  Google Scholar 

  9. Keet, A., Fortescue, B., Markham, D., et al.: Quantum secret sharing with qudit graph states. Phys. Rev. A 82(6), 062315 (2010)

    Article  ADS  Google Scholar 

  10. Yang, Y.H., Gao, F., Wu, X., et al.: Quantum secret sharing via local operations and classical communication. Sci. Rep. 5, 16967 (2015)

    Article  ADS  Google Scholar 

  11. Wang, T.Y., Liu, Y.C., Wei, C.Y., Cai, X.Q., Ma, J.F.: Security of a kind of quantum secret sharing with entangled states. Sci. Rep. 7, 2485 (2017)

    Article  ADS  Google Scholar 

  12. Wang, T.Y., Li, Y.P.: Cryptanalysis of dynamic quantum secret sharing. Quantum Inf. Process 12(5), 1991–1997 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  13. Wang, T.Y., Wen, Q.Y., Zhu, F.C.: Cryptanalysis of multiparty quantum secret sharing with Bell states and Bell measurements. Opt. Commun. 284(6), 1711–1713 (2011)

    Article  ADS  Google Scholar 

  14. Lin, S., Wen, Q.Y., Gao, F., et al.: Quantum secure direct communication with χ-type entangled states. Phys. Rev. A 78(6), 5175–5179 (2008)

    Article  Google Scholar 

  15. Wang, C., Deng, F.G., Li, Y.S., et al.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71(4), 44305 (2005)

    Article  ADS  Google Scholar 

  16. Jakobi, M., Simon, C., Gisin, N., et al.: Practical private database queries based on a quantum-key-distribution protocol. Phys. Rev. A 83(2), 022301 (2011)

    Article  ADS  Google Scholar 

  17. Gao, F., Liu, B., Huang, W., et al.: Postprocessing of the oblivious key in quantum private query. IEEE J. Sel. Top. Quantum Electron. 21(3), 98–108 (2015)

    Article  ADS  Google Scholar 

  18. Wei, C., Wang, T.Y., Gao, F.: Practical quantum private query with better performance in resisting joint-measurement attack. Phys. Rev. A 93(4), 042318 (2016)

    Article  ADS  Google Scholar 

  19. Wei, C., Cai, X.Q., Liu, B., et al.: A generic construction of quantum-oblivious-key-transfer-based private query with ideal database security and zero failure. IEEE Transactions on Computers (2017)

  20. Liu, B., Gao, F., Huang, W., et al.: QKD-based quantum private query without a failure probability. Sci. China Phys. Mech. Astron. 58(10), 100301 (2015)

    Article  Google Scholar 

  21. Gao, F., Liu, B., Wen, Q.Y., et al.: Flexible quantum private queries based on quantum key distribution. Opt. Express 20(16), 17411–17420 (2012)

    Article  ADS  Google Scholar 

  22. Wei, C., Gao, F., Wen, Q.Y., et al.: Practical quantum private query of blocks based on unbalanced-state Bennett-Brassard-1984 quantum-key-distribution protocol. Sci. Rep. 4, 7537 (2014)

    Article  Google Scholar 

  23. Zhang, J.L., Guo, F.Z., Gao, F., et al.: Private database queries based on counterfactual quantum key distribution. Phys. Rev. A 88(2), 022334 (2013)

    Article  ADS  Google Scholar 

  24. Shi, R., Mu, Y., Zhong, H., et al.: Secure multiparty quantum computation for summation and multiplication. Sci. Rep. 6, 19655 (2016)

    Article  ADS  Google Scholar 

  25. Crépeau, C., Gottesman, D., Smith, A.: Secure multi-party quantum computation. Proceedings of the thiry-fourth annual. ACM symposium on Theory of computing, pp. 643–652. ACM (2002)

  26. Chen, X.B., Xu, G., Yang, Y.X., et al.: An efficient protocol for the secure multi-party quantum summation. Int. J. Theor. Phys. 49(11), 2793–2804 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lo, H.K.: Insecurity of quantum secure computations. Phys. Rev. A 56(2), 1154–1162 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  28. Yang, Y.G., Xia, J., Jia, X., et al.: Comment on quantum private comparison protocols with a semi-honest third party. Quantum Inf. Process 12(2), 877–885 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Yang, Y.G., Wen, Q.Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A: Math. Theor. 42(5), 055305 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Yang, Y.G., Cao, W.F., Wen, Q.Y.: Secure quantum private comparison. Phys. Script. 80(6), 065002 (2009)

    Article  ADS  MATH  Google Scholar 

  31. Yang, Y.G., Xia, J., Jia, X.I.N., et al.: New quantum private comparison protocol without entanglement. Int. J. Quantum Inf. 10(06), 1250065 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Liu, B., Gao, F., Jia, H.Y., et al.: Efficient quantum private comparison employing single photons and collective detection. Quantum Inf. Process. 12(2), 887–897 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Chen, X.B., Su, Y., Niu, X.X., et al.: Efficient and feasible quantum private comparison of equality against the collective amplitude damping noise. Quantum Inf. Process. 13(1), 101–112 (2014)

    Article  ADS  MATH  Google Scholar 

  34. Wen, L., Yong-Bin, W., Wei, C.: Quantum private comparison protocol based on Bell entangled states. Commun. Theor. Phys. 57(4), 583 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Tseng, H.Y., Lin, J., Hwang, T.: New quantum private comparison protocol using EPR pairs. Quantum Inf. Process 11(2), 373–384 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhang, W.W., Zhang, K.J.: Cryptanalysis and improvement of the quantum private comparison protocol with semi-honest third party. Quantum Inf. Process. 12(5), 1981–1990 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Lin, J., Yang, C.W., Hwang, T.: Quantum private comparison of equality protocol without a third party. Quantum Inf. Process. 13(2), 239–247 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Liu, W., Wang, Y.B.: Quantum private comparison based on GHZ entangled states. Int. J. Theor. Phys. 51(11), 3596–3604 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  39. Chang, Y.J., Tsai, C.W., Hwang, T.: Multi-user private comparison protocol using GHZ class states. Quantum Inf. Process 12(2), 1077–1088 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Gao, X., Zhang, S.B., Chang, Y., et al.: Cryptanalysis of the Quantum Private Comparison Protocol Based on the Entanglement Swapping Between Three-Particle W-Class State and Bell State. Int. J. Theor. Phys. 57(6):1716–1722 (2018)

  41. Zhou, M.K.: Improvements of quantum private comparison protocol based on cluster states. Int. J. Theor. Phys. 57(1), 42–47 (2018)

    Article  MATH  Google Scholar 

  42. Wang, Q.L., Sun, H.X., Huang, W.: Multi-party quantum private comparison protocol with n-level entangled states. Quantum Inf. Process. 13(11), 2375–2389 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Liu, W., Wang, Y.B., Wang, X.M.: Multi-party Quantum Private Comparison Protocol Using d-Dimensional Basis States Without Entanglement Swapping. Int. J. Theor. Phys. 53(4), 1085–1091 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  44. Ye, T.Y.: Multi-party quantum private comparison protocol based on entanglement swapping of Bell entangled states. Commun. Theor. Phys. 66(3), 280 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Liu, W., Wang, Y.B., Wang, X.M.: Multi-party Quantum Private Comparison Protocol Using d -Dimensional Basis States Without Entanglement Swapping. Int. J. Theor. Phys. 53(4), 1085–1091 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  46. Gao, F., Qin, S., Wen, Q., et al.: A simple participant attack on the Bradler Dusek protocol. Quantum Inf. Comput. 7(4), 329–334 (2007)

    MathSciNet  MATH  Google Scholar 

  47. Zhao-Xu, J., Tian-Yu, Y.: Multi-party quantum private comparison based on the entanglement swapping of d-level cat states and d-level Bell states. Quantum Inf. Process 16(7), 177 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China under Grant No. 61472097,61802118.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunguang Ma.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, G., Zhang, F. & Ma, C. A New Multi-Party Quantum Private Comparison Protocol Based on Circle Model. Int J Theor Phys 58, 3225–3233 (2019). https://doi.org/10.1007/s10773-019-04197-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04197-2

Keywords

Navigation