Skip to main content
Log in

Multiparty Quantum Computation for Summation and Multiplication with Mutually Unbiased Bases

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We present an efficient protocol to securely compute the summation and multiplication of the multiparty secure numbers via quantum states in MUBs. In our protocols, we assume the third party Alice is semi-honest which means Alice might want to steal the secret messages of the participants but cannot be corrupted by the participants. The agents use decoy photons which are randomly in one of 2dm nonorthogonal multiparticle states to prevent the eavesdropper and potential dishonest agents from freely eavesdropping on the secure information. The scheme requires the agents of computation to transmit fewer particles for multiparty summation and multiplication, which makes the scheme more convenient to use than others. Moreover, it has the advantage of having high information capacity per photon for summation and multiplication in multiparty quantum computation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett, C.H., Brassad, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India. IEEE, New York. pp. 175. IEEE Press, New York (1984)

  2. Ekert, A.K.: Quantum cryptography based on Bells theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bells theorem. Phys. Rev. Lett. 68, 557 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Li, X.H., Deng, F.G., Zhou, H.Y.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A 78, 022321 (2008)

    Article  ADS  Google Scholar 

  5. Pinheiro, P., Ramos, R.: Two-layer quantum key distribution. Quantum Inf. Process. 14, 2111 (2015)

    Article  ADS  MATH  Google Scholar 

  6. Zhang, C.M., Li, M., Yin, Z.Q., Li, H.W., Chen, W., Han, Z.F.: Decoy-state measurement-device-independent quantum key distribution with mismatched-basis statistics. Sci. China-Phys. Mech. Astron. 58, 590301 (2015)

    Article  Google Scholar 

  7. Bai, Z.L., Wang, X.Y., Yang, S.S., Li, Y.H.: High-efficiency Gaussian key reconciliation in continuous variable quantum key distribution. Sci. China-Phys. Mech. Astron. 59, 614201 (2016)

    Article  Google Scholar 

  8. Cao, D.Y., Liu, B.H., Wang, Z., Huang, Y.F., Li, C.F., Guo, G.C.: Multiuser-to-multiuser entanglement distribution based on 1550 nm polarization-entangled photons. Sci. Bull. 60, 1128 (2015)

    Article  Google Scholar 

  9. Liu, X.M., Zhang, L.J., Wang, Y.G., Chen, W., Huang, D.J., Li, D., Wang, S., He, D.Y., Yin, Z.Q., Zhou, Y., Hui, C., Han, Z.F.: FPGA based digital phase-coding quantum key distribution system. Sci. China-Phys. Mech. Astron. 58, 120301 (2015)

    Article  Google Scholar 

  10. Huang, W., Su, Q., Xu, B.J., Liu, B., Fan, F., Jia, H.Y., Yang, Y.H.: Improved multiparty quantum key agreement in travelling mode. Sci. China-Phys. Mech. Astron. 59, 120311 (2016)

    Article  Google Scholar 

  11. Leverrier, A.: Security of continuous-variable quantum key distribution via a Gaussian de Finetti reduction. Phys. Rev. Lett. 118, 200501 (2017)

    Article  ADS  Google Scholar 

  12. Park, B.K., Lee, M.S., Woo, M.K., Kim, Y.S., Han, S.W., Moon, S.: QKD system with fast active optical path length compensation. Sci. China-Phys. Mech. Astron. 60, 060311 (2017)

    Article  ADS  Google Scholar 

  13. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162 (1999)

    Article  ADS  Google Scholar 

  15. Xiao, L., Long, G.L., Deng, F.G., Pan, J.W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69, 052307 (2004)

    Article  ADS  Google Scholar 

  16. Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72, 044302 (2005)

    Article  ADS  Google Scholar 

  17. Karimipour, V., Asoudeh, M.: Quantum secret sharing and random hopping: using single states instead of entanglement. Phys. Rev. A 92, 030301 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  18. Lin, S., Guo, G.D., Xu, Y.Z., Sun, Y., Liu, X.F.: Cryptanalysis of quantum secret sharing with d-level single particles. Phys. Rev. A 93, 062343 (2016)

    Article  ADS  Google Scholar 

  19. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  20. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  21. Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)

    Article  ADS  Google Scholar 

  22. Wang, C., Deng, F.G., Li, Y.S., Liu, X.S., Long, G.L.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71, 044305 (2005)

    Article  ADS  Google Scholar 

  23. Hu, J.Y., Yu, B., Jing, M.Y., Xiao, L.T., Jia, S.T., Qin, G.Q., Long, G.L.: Experimental quantum secure direct communication with single photons. Light: Sci. Appl. 5, e16144 (2005)

    Article  Google Scholar 

  24. Zhang, W., Ding, D.S., Sheng, Y.B., Zhou, L., Shi, B.S., Guo, G.C.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118, 220501 (2017)

    Article  ADS  Google Scholar 

  25. Wu, F.Z., Yang, G.J., Wang, H.B., Xiong, J., Alzahrani, F., Hobiny, A., Deng, F.G.: High-capacity quantum secure direct communication with two-photon six-qubit hyperentangled states. Sci. China-Phys. Mech. Astron. 60, 120313 (2017)

    Article  ADS  Google Scholar 

  26. Chen, S.S., Zhou, L., Zhong, W., Sheng, Y.B.: Three-step three-party quantum secure direct communication. Sci. China-Phys. Mech. Astron. 61, 090312 (2018)

    Article  Google Scholar 

  27. Qi, R.Y., Sun, Z., Lin, Z.S., Niu, P.H., Hao, W.T., Song, L.Y., Huang, Q., Gao, J.C., Yin, L.G., Long, G.L.: Implementation and security analysis of practical quantum secure direct communication. Light Sci. Appl. 8, 22 (2019)

    Article  ADS  Google Scholar 

  28. Beige, A., Englert, B.G., Kurtsiefer, C., Weinfurter, H.: Secure communication with a publicly known key. Acta Phys. Pol. A 101, 357 (2002)

    Article  ADS  MATH  Google Scholar 

  29. Li, X.H., Deng, F.G., Zhou, H.Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A 74, 054302 (2006)

    Article  ADS  Google Scholar 

  30. Li, N., Li, J., Li, L.L., Wang, Z., Wang, T.: Deterministic secure quantum communication and authentication protocol based on extended GHZ-w state and quantum one-time pad. Int. J. Theor. Phys. 55, 3579 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Jiang, D., Chen, Y.Y., Gu, X.M., Xie, L., Chen, L.J.: Deterministic secure quantum communication using a single d-level system. Sci. Rep. 7, 44934 (2017)

    Article  ADS  Google Scholar 

  32. Ren, B.C., Long, G.L.: General hyperentanglement concentration for photon systems assisted by quantum-dot spins inside optical microcavities. Opt. Express 22, 6547 (2014)

    Article  ADS  Google Scholar 

  33. Cao, C., Chen, X., Duan, Y.W., Fan, L., Zhang, R., Wang, T.J., Wang, C.: Concentrating partially entangled W-class states on nonlocal atoms using low-Q optical cavity and linear optical elements. Sci. China-Phys. Mech. Astron. 59, 100315 (2016)

    Article  Google Scholar 

  34. Sillanpää, M.A., Park, J.I., Simmonds, R.W.: Coherent quantum state storage and transfer between two phase qubits via a resonant cavity. Nature 449, 438 (2007)

    Article  ADS  Google Scholar 

  35. Tao, M.J., Hua, M., Ai, Q., Deng, F.G.: Quantum-information processing on nitrogen-vacancy ensembles with the local resonance assisted by circuit QED. Phys. Rev. A 91, 062325 (2015)

    Article  ADS  Google Scholar 

  36. Qiu, J., Wang, Y.Y., Yin, Z.Q., Zhang, M., Ai, Q., Deng, F.G.: Quantum Zeno and Zeno-like effects in nitrogen vacancy centers. Sci. Rep. 5, 17615 (2015)

    Article  ADS  Google Scholar 

  37. Sheng, Y.B., Zhou, L.: Blind quantum computation with a noise channel. Phys. Rev. A 98, 052343 (2018)

    Article  ADS  Google Scholar 

  38. Rebentrost, P., Mohseni, M., Lloyd, S.: Quantum support vector machine for big data classification. Phys. Rev. Lett. 113, 130503 (2014)

    Article  ADS  Google Scholar 

  39. Sheng, Y.B., Zhou, L.: Distributed secure quantum machine learning. Sci. Bull. 62, 1025 (2017)

    Article  Google Scholar 

  40. Lo, H.K.: Insecurity of quantum secure computations. Phys. Rev. A 56, 1554 (1997)

    Article  ADS  Google Scholar 

  41. Crépeau, C., Gottesman, D., Smith, A.: Secure multi-party quantum computation. In: Proceedings of the Thiry-Fourth Annual ACM Symposium on Theory of Computing, p 643. ACM (2002)

  42. Ben-Or, M., Crépeau, C., Gottesman, D., Hassidim, A., Smith, A.: Secure multiparty quantum computation with (only) a strict honest majority. In: 47th Annual IEEE Symposium on Foundations of Computer Science, FOCS’06, p. 249. IEEE (2006)

  43. Loukopoulos, K., Browne, D.E.: Secure multiparty computation with a dishonest majority via quantum means. Phys. Rev. A 81, 062336 (2010)

    Article  ADS  Google Scholar 

  44. Guo, G.P., Guo, G.C.: Quantum secret sharing without entanglement. Phys. Lett. A 310, 247 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Wang, X.J., An, L.X., Yu, X.T., Zhang, Z.C.: Multilayer quantum secret sharing based on GHZ state and generalized Bell basis measurement in multiparty agents. Phys. Lett. A 381, 3282 (2017)

    Article  ADS  Google Scholar 

  46. Kogias, I., Xiang, Y., He, Q.Y., Adesso, G.: Unconditional security of entanglement-based continuous-variable quantum secret sharing. Phys. Rev. A 95, 012315 (2017)

    Article  ADS  Google Scholar 

  47. Chen, Y.A., Zhang, A.N., Zhao, Z., Zhou, X.Q., Lu, C.Y., Peng, C.Z., Yang, T., Pan, J.W.: Experimental quantum secret sharing and third-man quantum cryptography. Phys. Rev. Lett. 95, 200502 (2005)

    Article  ADS  Google Scholar 

  48. Gaertner, S., Kurtsiefer, C., Bourennane, M., Weinfurter, H.: Experimental demonstration of four-party quantum secret sharing. Phys. Rev. Lett. 98, 020503 (2007)

    Article  ADS  Google Scholar 

  49. Bell, B.A., Markham, D., Herrera-Martí, D.A., Marin, A., Wadsworth, W.J., Rarity, J.G., Tame, M.S.: Experimental demonstration of graph-state quantum secret sharing. Nat. Commun. 5, 5480 (2014)

    Article  ADS  Google Scholar 

  50. Hillery, M., Ziman, M., Bužek, V., Bieliková, M.: Towards quantum-based privacy and voting. Phys. Lett. A 349, 75 (2006)

    Article  ADS  MATH  Google Scholar 

  51. Du, J.Z., Chen, X.B., Wen, Q.Y., Zhu, F.C.: Secure multiparty quantum summation. Acta Phys. Sin. 56, 6214 (2007)

    MathSciNet  Google Scholar 

  52. Zhang, C., Sun, Z.W., Huang, Y., Long, D.Y.: High-capacity quantum summation with single photons in both polarization and spatial-mode degrees of freedom. Int. J. Theor. Phys. 53, 933 (2014)

    Article  MATH  Google Scholar 

  53. Chen, X.B., Xu, G., Yang, Y.X., Wen, Q.Y.: An efficient protocol for the secure multi-party quantum summation. Int. J. Theor. Phys. 49, 2793 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  54. Zhang, C., Sun, Z.W., Huang, X., Long, D.Y.: Three-party quantum summation without a trusted third party. Int. J. Quantum Inform. 13, 1550011 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Shi, R.H., Mu, Y., Zhong, H., Cui, J., Zhang, S.: Secure multiparty quantum computation for summation and multiplication. Sci. Rep. 6, 19655 (2016)

    Article  ADS  Google Scholar 

  56. Liu, W., Wang, Y.B., Fan, W.Q.: An novel protocol for the quantum secure multi-party summation based on two-particle Bell states. Int. J. Theor. Phys. 56, 2783 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  57. Yang, H.Y., Ye, T.Y.: Secure multi-party quantum summation based on quantum Fourier transform. Quantum Inf. Process. 17, 129 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. Majumder, A., Mohapatra, S., Kumar, A.: Experimental realization of secure multiparty quantum summation using five-qubit IBM quantum computer on cloud. arXiv:1707.07460 (2017)

  59. Ivonovic, I.D.: Geometrical description of quantal state determination. J. Phys. A 14, 3241 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  60. Wootters, W.K., Fields, B.D.: Optimal state-determination by mutually unbiased measurements. Ann. Phys. 191, 363 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  61. Yuan, H., Zhou, Z.W., Guo, G.C.: Quantum state tomography via mutually unbiased measurements in driven cavity QED systems. New J. Phys. 18, 043013 (2016)

    Article  ADS  Google Scholar 

  62. Mafu, M., Dudley, A., Goyal, S., Giovannini, D., McLaren, M., Padgett, M.J., Konrad, T., Petruccione, F., Lütkenhaus, N., Forbes, A.: Higher-dimensional orbital-angular-momentum-based quantum key distribution with mutually unbiased bases. Phys. Rev. A 88, 032305 (2013)

    Article  ADS  Google Scholar 

  63. Cerf, N.J., Bourennane, M., Karlsson, A., Gisin, N.: Security of quantum key distribution using d-level systems. Phys. Rev. Lett. 88, 127902 (2002)

    Article  ADS  Google Scholar 

  64. Chen, B., Fei, S.M.: Unextendible maximally entangled bases and mutually unbiased bases. Phys. Rev. A 88, 034301 (2013)

    Article  ADS  Google Scholar 

  65. Stroud, A.M.C.: Unextendible maximally entangled bases and mutually unbiased bases. J. Mod. Optic 49, 2115 (2002)

    Article  ADS  Google Scholar 

  66. Li, C.Y., Zhou, H.Y., Wang, Y., Deng, F.G.: Secure quantum key distribution network with Bell states and local unitary operations. Chin. Phys. Lett. 22, 1049 (2005)

    Article  ADS  Google Scholar 

  67. Deng, F.G., Zhou, H.Y., Long, G.L.: Circular quantum secret sharing. J. Phys. A 39, 14089 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos. 61501129 and 11564004, Natural Science Foundation of Guangxi under Grant Nos. 2014GXNSFAA118008, Special Funds of Guangxi Distinguished Experts Construction Engineering and Xiangsihu Young Scholars and Innovative Research Team of GXUN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Zhou.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, SX., Jiao, XF. & Zhou, P. Multiparty Quantum Computation for Summation and Multiplication with Mutually Unbiased Bases. Int J Theor Phys 58, 2872–2882 (2019). https://doi.org/10.1007/s10773-019-04170-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04170-z

Keywords

Navigation