Skip to main content
Log in

Compressed-Sensing-based Gradient Reconstruction for Ghost Imaging

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper, we propose a compression sensing ghost imaging algorithm to reduce the computation time with high image quality via compression sensing based on the total variation reconstruction. A small amount of measurements can be used for shortening the sampling time. The total variation is used as criteria during the search process. It makes the ghost image achieving a high image reconstruction quality. The simulation results demonstrate that the proposed method can enhance imaging quality with the reduced computation time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Baraniuk, R.G.: Compressive sensing [lecture notes]. IEEE Signal Process. Mag. 24(4), 118–121 (2007)

    Article  ADS  Google Scholar 

  2. Bennink, R.S., Bentley, S.J., Boyd, R.W.: Two-photon coincidence imaging with a classical source. Phys. Rev. Lett. 89(11), 113601 (2002)

    Article  ADS  Google Scholar 

  3. Candes, E.J.: The restricted isometry property and its implications for compressed sensing. Comptes Rendus Mathematique 346(9–10), 589–592 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Candes, E.J., Tao, T.: Near-optimal signal recovery from random projections: Universal encoding strategies? IEEE Trans. Inf. Theory 52(12), 5406–5425 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Candès, E.J., Wakin, M.B.: An introduction to compressive sampling. IEEE Signal Process. Mag. 25(2), 21–30 (2008)

    Article  ADS  Google Scholar 

  6. Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Candes, E.J., Romberg, J.K., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59(8), 1207–1223 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Candès, E.J., et al.: Compressive sampling. In: Proceedings of the International Congress of Mathematicians, vol. 3, pp. 1433–1452. Madrid (2006)

  9. Chen, X.H., Agafonov, I.N., Luo, K.H., Liu, Q., Xian, R., Chekhova, M.V., Wu, L.A.: High-visibility, high-order lensless ghost imaging with thermal light. Opt. Lett. 35(8), 1166–1168 (2010)

    Article  ADS  Google Scholar 

  10. Cheng, J., Han, S.: Incoherent coincidence imaging and its applicability in x-ray diffraction. Phys. Rev. Lett. 92(9), 093903 (2004)

    Article  ADS  Google Scholar 

  11. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Du, J., Gong, W., Han, S.: The influence of sparsity property of images on ghost imaging with thermal light. Opt. Lett. 37(6), 1067–1069 (2012)

    Article  ADS  Google Scholar 

  13. Erkmen, B.I., Shapiro, J.H.: Unified theory of ghost imaging with gaussian-state light. Phys. Rev. A 77(4), 043809 (2008)

    Article  ADS  Google Scholar 

  14. Erkmen, B.I., Shapiro, J.H.: Signal-to-noise ratio of gaussian-state ghost imaging. Phys. Rev. A 79(2), 023833 (2009)

    Article  ADS  Google Scholar 

  15. Erkmen, B.I., Shapiro, J.H.: Ghost imaging: from quantum to classical to computational. Adv. Opt. Photon. 2(4), 405–450 (2010)

    Article  Google Scholar 

  16. Ferri, F., Magatti, D., Gatti, A., Bache, M., Brambilla, E., Lugiato, L.A.: High-resolution ghost image and ghost diffraction experiments with thermal light. Phys. Rev. Lett. 94(18), 183602 (2005)

    Article  ADS  Google Scholar 

  17. Ferri, F., Magatti, D., Lugiato, L.A., Gatti, A.: Differential ghost imaging. Phys. Rev. Lett. 104(25), 253603 (2010)

    Article  ADS  Google Scholar 

  18. Gatti, A., Brambilla, E., Bache, M., Lugiato, L.A.: Ghost imaging with thermal light: comparing entanglement and classicalcorrelation. Phys. Rev. Lett. 93(9), 093602 (2004)

    Article  ADS  Google Scholar 

  19. Gatti, A., Bache, M., Magatti, D., Brambilla, E., Ferri, F., Lugiato, L.: Coherent imaging with pseudo-thermal incoherent light. J. Mod. Opt. 53(5–6), 739–760 (2006)

    Article  ADS  Google Scholar 

  20. Katkovnik, V., Astola, J.: Compressive sensing computational ghost imaging. JOSA A 29(8), 1556–1567 (2012)

    Article  ADS  Google Scholar 

  21. Katz, O., Bromberg, Y., Silberberg, Y.: Compressive ghost imaging. Appl. Phys. Lett. 95(13), 131110 (2009)

    Article  ADS  Google Scholar 

  22. Klyshko, D.: Combine epr and two-slit experiments: interference of advanced waves. Phys. Lett. A 132(6–7), 299–304 (1988)

    Article  ADS  Google Scholar 

  23. Liu, S., Cao, J., Wu, G., Liu, H., Tan, X., Zhou, X.: Cs-mri reconstruction via group-based eigenvalue decomposition and estimation. Neurocomputing 283, 166–180 (2017)

    Article  Google Scholar 

  24. Lugiato, L., Gatti, A., Brambilla, E.: Quantum imaging. J. Opt. B: Quantum Semiclassical Opt. 4(3), S176 (2002)

    Article  ADS  Google Scholar 

  25. Meyers, R., Deacon, K.S., Shih, Y.: Ghost-imaging experiment by measuring reflected photons. Phys. Rev. A 77(4), 041801 (2008)

    Article  ADS  Google Scholar 

  26. Meyers, R.E., Deacon, K.S., Shih, Y.: Turbulence-free ghost imaging. Appl. Phys. Lett. 98(11), 111115 (2011)

    Article  ADS  Google Scholar 

  27. Pittman, T., Shih, Y., Strekalov, D., Sergienko, A.: Optical imaging by means of two-photon quantum entanglement. Phys. Rev. A 52(5), R3429 (1995)

    Article  ADS  Google Scholar 

  28. Romberg, J.: Imaging via compressive sampling. IEEE Signal Process. Mag. 25 (2), 14–20 (2008)

    Article  ADS  Google Scholar 

  29. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena 60(1–4), 259–268 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Shapiro, J.H.: Computational ghost imaging. Quantum Electron. Laser Sci. Conf. 78(6), 1–2 (2009)

    Google Scholar 

  31. Strekalov, D., Sergienko, A., Klyshko, D., Shih, Y.: Observation of two-photon ghost interference and diffraction. Phys. Rev. Lett. 74(18), 3600 (1995)

    Article  ADS  Google Scholar 

  32. Sun, B., Welsh, S.S., Edgar, M.P., Shapiro, J.H., Padgett, M.J.: Normalized ghost imaging. Opt. Express 20(15), 16892–16901 (2012)

    Article  ADS  Google Scholar 

  33. Tang, V.H., Bouzerdoum, A., Phung, S.L.: Multipolarization through-wall radar imaging using low-rank and jointly-sparse representations. IEEE Trans. Image Process. 27(4), 1763–1776 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Tseng, Y., Chen, Y., Lu, C.: Adaptive integration of the compressed algorithm of cs and npc for the ecg signal compressed algorithm in vlsi implementation. Sensors 17(10), 2288 (2017)

    Article  Google Scholar 

  35. Valencia, A., Scarcelli, G., D’Angelo, M., Shih, Y.: Two-photon imaging with thermal light. Phys. Rev. Lett. 94(6), 063601 (2005)

    Article  ADS  Google Scholar 

  36. Varshney, K.R., Cetin, M., Fisher, J.W., Willsky, A.S.: Sparse representation in structured dictionaries with application to synthetic aperture radar. IEEE Trans. Signal Process. 56(8), 3548–3561 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Xiong, J., Cao, D.Z., Huang, F., Li, H.G., Sun, X.J., Wang, K.: Experimental observation of classical subwavelength interference with a pseudothermal light source. Phys. Rev. Lett. 94(17), 173601 (2005)

    Article  ADS  Google Scholar 

  38. Zhang, D., Zhai, Y.H., Wu, L.A., Chen, X.H.: Correlated two-photon imaging with true thermal light. Opt. Lett. 30(18), 2354–2356 (2005)

    Article  ADS  Google Scholar 

  39. Zhou, N., Jiang, H., Gong, L., Xie, X.: Double-image compression and encryption algorithm based on co-sparse representation and random pixel exchanging. Opt. Lasers Eng. 110, 72–79 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61572529, 61871407, 61872390, 61801522), and the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 18KJB510045).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rong Zhu or Ying Guo.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, R., Li, G. & Guo, Y. Compressed-Sensing-based Gradient Reconstruction for Ghost Imaging. Int J Theor Phys 58, 1215–1226 (2019). https://doi.org/10.1007/s10773-019-04013-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04013-x

Keywords

Navigation