Skip to main content
Log in

Markovian and Non-Markovian Dynamics of Non-classical Correlations and Wigner Function for GHZ-Type Coherent States

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We process comparatively the time evolution of quantum discord, quantum entanglement and Wigner function for GHZ-type coherent states independently interacting with dephasing reservoirs and we address the influence of both Markovian and non-Markovian environments on their evolution. As a matter of fact, we show that in open multipartite systems negativity of Wigner function is sensitive not only to quantum entanglement but also to quantum discord. Indeed, we deem that the Wigner function can be used to capture and quantify general quantum correlations in open multipartite systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ollivier, H., Zurek, W.H.: Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  Google Scholar 

  2. Zurek, W.H.: Rev. Mod. Phys. 75, 715 (2003)

    Article  ADS  Google Scholar 

  3. Henderson, L., Vedral, V. J.: Phys. A Math. Gen. 34, 6899 (2001)

    Article  ADS  Google Scholar 

  4. Einstein, A., Podolsky, B., Rosen, N.: Phys. Rev. 47, 777 (1935)

    Article  ADS  Google Scholar 

  5. Schrödinger, E.: Naturwissenschaften 23, 807 (1935)

    Article  ADS  Google Scholar 

  6. Sheng, Y. B., Zhou, L.: Sci. Bull. 62, 1025 (2017)

    Article  Google Scholar 

  7. Siyouri, F. Z.: Commun. Theor. Phys. 68, 729 (2017)

    Article  ADS  Google Scholar 

  8. Zhang, W., Ding, D. S., Sheng, Y. B., et al.: Phys. Rev. Lett. 118, 220501 (2017)

    Article  ADS  Google Scholar 

  9. Siyouri, F. Z., Ziane, M., El Baz, M., Hassouni, Y.: Int. J. Geom. Methods Mod. Phys. 15, 1850038 (2018)

    Article  MathSciNet  Google Scholar 

  10. Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  11. Mazzola, L., Maniscalco, S., Piilo, J., Suominen, K.A., Garraway, B. M.: Phys. Rev. A 79, 042302 (2009)

    Article  ADS  Google Scholar 

  12. An, N.B., Kim, J., Kim, K.: Phys. Rev. A 82, 032316 (2010)

    Article  ADS  Google Scholar 

  13. Pinto, J.P.G., Karpat, G., Fanchini, F.F.: Phys. Rev. A 88, 034304 (2013)

    Article  ADS  Google Scholar 

  14. Siyouri, F., El Baz, M., Hassouni, Y.: Quantum Inf. Proc. 15(10), 4237–4252 (2016)

    Article  ADS  Google Scholar 

  15. Kenfack, A., Zyczkowski, K.: J. Opt. B: Quantum Semiclass Opt. 6, 396 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  16. Banerji, A., Singh, R.P., Bandyopadhyay, A.: Opt. Commun. 330, 85 (2014)

    Article  ADS  Google Scholar 

  17. Simon, R.: Phys. Rev. Lett. 84, 2726 (2000)

    Article  ADS  Google Scholar 

  18. Siyouri, F. Z.: Commun. Theor. Phys. 68, 729 (2017)

    Article  ADS  Google Scholar 

  19. Gerry, C., Knight, P.: Introductory Quantum Optics. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  20. Wigner, E.P.: Phys. Rev. 40, 749 (1932)

    Article  ADS  Google Scholar 

  21. Zachos, K.C., Fairlie, B.D., Curtright, L.T.: Quantum Mechanics in Phase Space. World Scientific, Singapore (2005)

  22. Scully, M.O., Zubairy, M.S.: Quantum Optics. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  23. Mari, A., Eisert, J.: Phys. Rev. Lett. 109, 230503 (2012)

    Article  ADS  Google Scholar 

  24. Veitch, V., Wiebe, N., Ferrie, C., Emerson, J.: J. New Phys. 15, 013037 (2013)

    Article  Google Scholar 

  25. Daffer, S., Wodkiewicz, K., Cresser, J. D., McIver, J. K.: Phys. Rev. A 70, 010304 (2004)

    Article  ADS  Google Scholar 

  26. Siyouri, F., Rfifi, S., El Baz, M., Hassouni, Y.: Commun. Theor. Phys. 65, 447 (2016)

    Article  ADS  Google Scholar 

  27. Ali, M.: Phys. Lett. A 378, 2048 (2014)

    Article  ADS  Google Scholar 

  28. Luo, S., Fu, S., Song, H.: Phys. Rev. A 86, 044101 (2012)

    Article  ADS  Google Scholar 

  29. Breuer, H.-P., Laine, E.-M., Piilo, J.: Phys. Rev. Lett. 103, 210401 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  30. Vidal, G., Werner, R. F.: Compatable measure of entanglement. Phys. Rev. A 65, 032314 (2002)

    Article  ADS  Google Scholar 

  31. Sabin, C., García-Alcaine, G.: Eur. Phys. J. D 48(3), 435 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  32. Cover, T.M., Thomas, J.A.: Wiley Series in Telecommunications. Wiley, New York (1991)

    Google Scholar 

  33. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  34. Dodonov, V.V.J.: Opt. B Quantum Semiclass Opt. 4, R1–R33 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  35. Barenco, A., Deutsch, D., Ekert, A., Jozsa, R.: Phys. Rev. Lett. 74, 4083 (1995)

    Article  ADS  Google Scholar 

  36. Gorini, V., Frigerio, A., Verri, M., Kossakowski, A., Sudarshan, E. C. G.: Rep. Math. Phys. 13, 149 (1978)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatima-Zahra Siyouri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siyouri, FZ. Markovian and Non-Markovian Dynamics of Non-classical Correlations and Wigner Function for GHZ-Type Coherent States. Int J Theor Phys 58, 103–113 (2019). https://doi.org/10.1007/s10773-018-3913-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-018-3913-1

Keywords

Navigation