Skip to main content
Log in

A Choreographed Distributed Electronic Voting Scheme

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper, we propose a choreographed distributed electronic voting scheme, which is based on quantum group blind signature. Our distributed electronic voting scheme could really protect the message owner’s privacy and anonymity which the classical electronic voting systems can not provide. The electors can exercise their voting rights effectively, and no one other than the tallyman Bob knows the contents of his vote. Moreover, we use quantum key distribution protocol and quantum one-time pad to guarantee its unconditional security. Furthermore, when there was a dispute, the group supervisor David can detect the source of the signature based on the signature’s serial number \(SN\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Gritzalis, D.: Secure electronic voting. In: 7th Computer Security Incidents Response Teams Workshop Syros, Greece (2002)

  2. Tian, J.H., Zhang, J.Z., Li, Y.P.: A quantum multi-proxy blind signature scheme based on genuine four-qubit entangled state. Int. J. Theor. Phys. 55(2), 809–816 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Shao, A.X., Zhang, J.Z., Xie, S.C.: A quantum multi-proxy multi-blind-signature scheme based on genuine six-qubit entangled state. Int. J. Theor. Phys. 55, 5216–5224 (2016)

    Article  MATH  Google Scholar 

  4. Fan, C., Lei, C.: Efficient blind signature scheme based on quadratic residues. Electron. Lett. 32(9), 811–813 (1996)

    Article  Google Scholar 

  5. Yang, Y.Y., Zhang, J.Z., Xie, S.C.: An improved quantum proxy blind signature scheme based on genuine seven-qubit entangled state. Int. J. Theor. Phys. 56 (7), 2293–2302 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Harn, L.: Cryptanalysis of the blind signature based on the discrete logarithm. Electron. Lett. 31(14), 1136–1137 (1995)

    Article  Google Scholar 

  7. Lysyanskaya, A., Ramzan, Z.: Group blind digital signature: a scalable solution to electronic cash. In: Proceedings of the 2nd Financial Cryptography Conference (1998)

  8. Mohammed, E., Emarah, A.E., El-Shennawy, K.: A Blind Signature Scheme Based on Elgamal Signature. In: EURO-COMM 2000. Information Systems for Enhanced Public Safety and Security, pp 51–53. IEEE/AFCEA (2000)

  9. Chien, H., Jan, J., Tseng, Y.: Eighth international conference on parallel and distributed systems (ICPADS01) 44 (2001)

  10. Xu, G.B., Zhang, K.J.: A novel quantum group signature scheme without using entangled states. Quantum Inf. Process. 14(7), 2577–2587 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Hillery, M.: Quantum voting and privacy ptotection: first steps. Int. Soc. Opt. Eng. https://doi.org/10.1117/2.1200610.0419 (2006)

  12. Vaccaro, J.A., Spring, J., Chefles, A.: Quantum protocols for anonymous voting and surveying. Phys. Rev. A 75(1), 012333 (2007)

    Article  ADS  Google Scholar 

  13. Wen, X.J., Cai, X.J.: Secure quantum voting protocol. Shangdong Univ. (Natural Science) 46(9), 9–13 (2011)

    MathSciNet  Google Scholar 

  14. Yi, Z., He, G.Q., Zeng, G.H.: Quantum voting protocol using two-mode squeezed states. Acta Phys. Sin. 58(5), 3166–3172 (2009)

    Google Scholar 

  15. Horoshko, D., Kilin, S.: Quantum anonymous voting with anonymity check. Phys. Lett. A 375(8), 1172–1175 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Tian, J.H., Zhang, J.Z., Li, Y.P.: A voting protocol based on the controlled quantum operation teleportation. Int. J. Theor. Phys. 55(5), 2303–2310 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cao, H.J., Ding, L.Y., Yu, Y.F., et al.: An electronic voting system achieved by using quantum proxy sinature. Int. J. Theor. Phys. 55(9), 4081–4088 (2016)

    Article  MATH  Google Scholar 

  18. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the International Conference on Computers, pp 175–179. IEEE (1984)

  19. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441–444 (2000)

    Article  ADS  Google Scholar 

  20. Mayers, D.: Unconditional security in quantum cryptography. J. Assoc.: Comput. Math. 48(1), 351–406 (2001)

    MathSciNet  MATH  Google Scholar 

  21. Inamon, H., Lutkenhaus, N., Mayers, D.: Unconditional security of practical quantum key distribution. Eur. Phys. J. D 41(3), 599–627 (2007)

    Article  ADS  Google Scholar 

  22. Qi, J.X.: Quantum detection of a four-qubit entangled states. J. Xian University Posts Telecommun. 18(5), 63–65 (2013)

    Google Scholar 

  23. Guo, W., Zhang, J.Z., Li, Y.P., et al.: Multi-proxy strong blind quantum signature scheme. Int. J. Theor. Phys. 55(8), 3524–3536 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Deng, F.G., Long, G.L., et al.: Two-step quantum direct communication using the Einstein-podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  25. Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)

    Article  ADS  Google Scholar 

  26. Cai, Q.Y., Li, B.W.: Deterministic secure communication without using entanglement. Chin. Lett. 21, 601–603 (2004)

    Article  ADS  Google Scholar 

  27. Gao, F., Qin, S.J., Wen, Q.Y., et al.: Cryptanalysis of multiparty controlled quantum secure direct communication using Greenberger-Horne-Zeilinger state. Opt. Commun. 283(1), 192–195 (2010)

    Article  ADS  Google Scholar 

  28. Lin, S., Wen, Q.Y., Gao, F., et al.: Quantum secure direct communication with x-type entangled states. Phys. Rev. A 78(6), 064304 (2008)

    Article  ADS  Google Scholar 

  29. Cao, H.J., Ding, L.Y., Jiang, X.L., et al.: A new proxy electronic voting scheme achieved by six-particle entangled states. Int. J. Theor. Phys. 57(3), 674–681 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 61402275, 61402015, 61273311), the Natural Science Foundation of Shaanxi Province (Grant No. 2015JM6263, 2016JM6069), and the Fundamental Research Funds for the Central Universities(Grant No. GK201402004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Zhong Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, JL., Zhang, JZ. & Xie, SC. A Choreographed Distributed Electronic Voting Scheme. Int J Theor Phys 57, 2676–2686 (2018). https://doi.org/10.1007/s10773-018-3789-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-018-3789-0

Keywords

Navigation