Skip to main content
Log in

New Physical Mechanism for Lightning

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The article is devoted to electromagnetic phenomena in the atmosphere. The set of experimental data on the thunderstorm activity is analyzed. It helps to identify a possible physical mechanism of lightning flashes. This mechanism can involve the formation of metallic bonds in thunderclouds. The analysis of the problem is performed at a microphysical level within the framework of quantum mechanics. The mechanism of appearance of metallic conductivity includes the resonant tunneling of electrons along resonance-percolation trajectories. Such bonds allow the charges from the vast cloud charged subsystems concentrate quickly in lightning channel. The formation of metal bonds in the thunderstorm cloudiness is described as the second-order phase transition. A successive mechanism for the process of formation and development of the lightning channel is suggested. This mechanism is associated with the change in the orientation of crystals in growing electric field. Possible consequences of the quantum-mechanical mechanism under discussion are compared with the results of observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wilson, C.T.: Investigations on lightning discharges and on the electric field of thunderstorms. Philos. Trans. Roy. Soc. Lond. A. 221, 73–115 (1920)

    Article  ADS  Google Scholar 

  2. Mareev, E.A.: Global electric circuit research: achievements and prospects. Phys. Usp. 53, 504–511 (2010). https://doi.org/10.3367/UFNe.0180.201005h.0527

    Article  ADS  Google Scholar 

  3. Harrison, R.G.: The carnegie curve. Surv. Geophys. 34, 209–232 (2013)

    Article  ADS  Google Scholar 

  4. Muchnik, V.M.: Fizika Grozy (Physics of Thunderstorm). Gidrometeoizdat, Leningrad (1974)

    Google Scholar 

  5. Elster, J., Geitel, H.: Zur Influenztheorie der Nieder- schlagselektrizität. Phys. Z. 14, 1287–1292 (1913)

    Google Scholar 

  6. Wilson, C.T.R.: Some thundercloud problems. J. Franklin Inst. 208, 1–12 (1929)

    Article  Google Scholar 

  7. Grenet, G.: Essai d’explication de la charge electrique des nuages d’orages. Ann. Geophys. 3, 306–307 (1947)

    Google Scholar 

  8. Vonnegut, B.: Possible mechanism for the formation of thunderstorm electricity. In: Geophysical Research Paper No. 42. Proceeding of the Conference on Atmos. Electricity AFCRC-TR-55-222, pp 169–181 (1955)

  9. Chalmers, J.A.: Atmospheric Electricity. Pergamon Press, New York (1967)

    Google Scholar 

  10. Avila, E.E., Longo, G.S., Burgesser, R.E.: Mechanism for electric charge separation by ejection of charged particles from an ice particle growing by riming. Atmos. Res. 69, 99–108 (2003)

    Article  Google Scholar 

  11. Mason, J., Mason, N.: The physics of a thunderstorm. Eur. J. Phys. 24, S99–S110 (2003)

    Article  ADS  MATH  Google Scholar 

  12. Handel, P.H.: Polarization catastrophe theory of cloud electricity - speculation of a new mechanism for thunderstorm electrification. J. Geoph. Res.: Atmos. 90(D3), 5857–5863 (1985)

    Article  ADS  Google Scholar 

  13. Bazelyan, E.M., Raizer J.P.: Fizika Molnii I Molniezaschity (Physics of Lightning and Lightning Protection). Fizmatlit, Moscow (2001)

    Google Scholar 

  14. Rakov, V.A., Uman, M.A.: Lightning: Physics and Effects. Cambridge University Press, New York (2003)

    Book  Google Scholar 

  15. Iudin, D.I., Trakhtengerts, V.: Fractal dynamics of electric charges in a thunderstorm cloud. Izv. Atmos. Oceanic Phys. 36, 597–608 (2000)

    Google Scholar 

  16. Iudin, D.I., Trakhtengertz, V.Y., Hayakawa, M.: Fractal dynamics of electric discharges in a thundercloud. Phys. Rev. E. 68, 016601 (2003)

    Article  ADS  Google Scholar 

  17. Iudin, D.I., Trakhtengertz, V.: Sprites, elves and intense lightning discharges. NATO Science Series Springer 225, 341–376 (2006)

    Google Scholar 

  18. Lowke, J.J.: The initiation of lightning in thunderclouds: the possible influence of metastable nitrogen and oxygen molecules in initiating lightning streamers. J. Geophys. Res. Atmos. 120, 3183–3190 (2015)

    Article  ADS  Google Scholar 

  19. Carlson, B.E., Liang, C., Bitzer, P., Christian, H.: Time domain simulations of preliminary breakdown pulses in natural lightning. J. Geophys. Res. Atmos. 120, 5316–5333 (2015)

    Article  ADS  Google Scholar 

  20. Artekha, S N., Belyan, A.V.: On the role of electromagnetic phenomena in some atmospheric processes. Nonlinear Process. Geophys. 20, 293–304 (2013). https://doi.org/10.5194/npg-20-293-2013

    Article  ADS  Google Scholar 

  21. Artekha, S.N., Belyan, A.V., Erokhin, N.S.: Manifestations of electromagnetic phenomena in atmospheric processes. Sovr. Probl. DZZ Kosm. 10(2), 225–233 (2013)

    Google Scholar 

  22. Arteha, S.N., Belyan, A.V., Erokhin, N.S.: Electromagnetic phenomena in atmospheric plasma-like subsystems. Problems of Atomic Science and Technology 4 (86), 115–120 (2013)

    Google Scholar 

  23. Marshall, T.C., Stolzenburg, M., Maggio, C.R., Coleman, L.M., Krehbiel, P.R., Hamlin, T., Thomas, R.J., Rison, W.: Observed electric fields associated with lightning initiation. Geophys. Res. Lett. 32, L03813 (2005)

    ADS  Google Scholar 

  24. Gurevich, A.V., Milikh, G.M., Roussel-Dupre, R.: Runaway electron mechanism of air breakdown and preconditioning during a thunderstorm. Phys. Lett. A 165(5-6), 463–468 (1992)

    Article  ADS  Google Scholar 

  25. Gurevich, A.V., Zybin, K.P.: Runaway breakdown and electric discharges in thunderstorms. Phys. Usp. 44, 1119–1140 (2001)

    Article  ADS  Google Scholar 

  26. Gurevich, A.V., Karashtin, A.N., Ryabov, V.A., Chubenko, A.P., Shchepetov, S.V.: Nonlinear phenomena in the ionospheric plasma. Effects of cosmic rays and runaway breakdown on thunderstorm discharges. Phys. Usp. 52, 735–745 (2009)

    Article  ADS  Google Scholar 

  27. Lifshitz, I.M., Kirpichenkov, V.Y.: Tunnel transparency of disordered systems. JETP 50(3), 499–511 (1979)

    ADS  Google Scholar 

  28. Lifshits, I.M., Gredeskul, S.A., Pastur, L.A.: Introduction to the Theory of Disordered Systems. Wiley, New York (1988)

    Google Scholar 

  29. Artekha, S.N., Belyan, A.: On a possible mechanism for lightning flashes. In: Proceedings of the International Conference MSS-14 “Mode Conversion Coherent Structures and Turbulence”, pp 58–63. LENAND, Moscow (2014)

  30. Zaitsev, R.O., Kuz’min, E.V., Ovchinnikov, S.G.: Fundamental ideas on metal-dielectric transitions in 3d-metal compounds. Physics - Uspekhi 29, 322–342 (1986)

    Article  Google Scholar 

  31. Hartree, D.R.: The wave mechanics of an atom with a non-coulomb central field. Part I. theory and methods. Math. Proc. Camb. Philos. Soc. 24, 89–110 (1928). https://doi.org/10.1017/S0305004100011919

    Article  ADS  MATH  Google Scholar 

  32. Likal’ter, A.A.: Gaseous metals. Physics - Uspekhi 35(7), 591–605 (1992)

    Article  Google Scholar 

  33. Artekha, S.N., Moiseev, S.S.: Transmission of randomly nonuniform barriers and certain physical consequences. Technical Phys. 38, 265–271 (1993)

    ADS  Google Scholar 

  34. Kittel, C.: Introduction to Solid State Physics. Wiley, New York (1971)

    MATH  Google Scholar 

  35. Ashcroft, N.Q.W., Mermin, N.D.: Solid State Physics. Saunders College, Philadelphia (1976)

    MATH  Google Scholar 

  36. Denisenko, M.V., Derbenko, A.S., Kashin, S.M., Satanin, A.M.: Calculation of the Bloch functions of an electron in a one-dimensional periodic potential. NNSU, Nizhny Novgorod (2010)

  37. Nakano, T.: Direct interaction approximation of turbulence in the wave packet representation. Phys. Fluids. 31(6), 1420–1430 (1988)

    Article  ADS  MATH  Google Scholar 

  38. Thomas, H., Morfill, G.E., Demmel, V., Goree, J., Feuerbacher, B., Möhlmann, D.: Plasma crystal: coulomb crystallization in a dusty plasma. Phys. Rev. Lett. 73(5), 652–655 (1994)

    Article  ADS  Google Scholar 

  39. Chu, J., Lin, I.: Coulomb lattice in a weakly ionized colloidal plasma. Physica A. 205(1-3), 183–190 (1994)

    Article  ADS  Google Scholar 

  40. Tsytovich, V.N.: Dust plasma crystals, drops, and clouds. Phys. Usp. 40, 53–94 (1997). https://doi.org/10.1070/PU1997v040n01ABEH000201

    Article  ADS  Google Scholar 

  41. Fortov, V.E., Khrapak, A.G., Khrapak, S.A., Molotkov, V.I., Petrov, O.F.: Dusty plasmas. Phys. Usp. 47, 447–492 (2004). https://doi.org/10.1070/PU2004v047n05ABEH001689

    Article  ADS  Google Scholar 

  42. Morfill, G.E., Ivlev, A.V.: Complex plasmas: an interdisciplinary research field. Rev. Mod. Phys. 81, 1353–1404 (2009). https://doi.org/10.1103/RevModPhys.81.1353

    Article  ADS  Google Scholar 

  43. Iudin, D.I., Iudin, F.D., Hayakawa, M.: Modeling of the intracloud lightning discharge radio emission. Radiophys. Quantum Electron. 58(3), 173–184 (2015)

    Article  ADS  Google Scholar 

  44. Saunders, C.P.R., Rimmer, J.S.: The electric field alignment of ice crystals in thunderstorms. Atmos. Res. 51, 337–343 (1999)

    Article  Google Scholar 

  45. Foster, T.C., Hallet, J.: The alignment of ice crystals in changing electric fields. Atmos. Res. 62, 149–169 (2002)

    Article  Google Scholar 

  46. Vysotskii, V.I., Vysotskyy, M.V., Adamenko, S.V.: Formation and application of correlated states in nonstationary systems at low energies of interacting particles. J. Exp. Theor. Phys. 114(2), 243–252 (2012)

    Article  ADS  Google Scholar 

  47. Vysotskii, V.I., Vysotskyy, M.V.: Correlated states and transparency of a barrier for low-energy particles at monotonic deformation of a potential well with dissipation and a stochastic force. J. Exp. Theor. Phys. 118(4), 534–549 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey N. Artekha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Artekha, S.N., Belyan, A.V. New Physical Mechanism for Lightning. Int J Theor Phys 57, 388–405 (2018). https://doi.org/10.1007/s10773-017-3571-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-017-3571-8

Keywords

Navigation