Skip to main content
Log in

Deterministic Joint Remote Preparation of an Arbitrary Sevenqubit Cluster-type State

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper, we propose a scheme for joint remotely preparing an arbitrary seven-qubit cluster-type state by using several GHZ entangled states as the quantum channel. The coefficients of the prepared states can be not only real, but also complex. Firstly, Alice performs a three-qubit projective measurement according to the amplitude coefficients of the target state, and then Bob carries out another three-qubit projective measurement based on its phase coefficients. Next, one three-qubit state containing all information of the target state is prepared with suitable operation. Finally, the target seven-qubit cluster-type state can be prepared by introducing four auxiliary qubits and performing appropriate local unitary operations based on the prepared three-qubit state in a deterministic way. The receiver’s all recovery operations are summarized into a concise formula. Furthermore, it’s worth noting that our scheme is more novel and feasible with the present technologies than most other previous schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bennett, C. H., Wiesner, S. J.: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Shao, Q.: Quantum teleportation of the two-qubit entangled state by use of four-qubit entangled state. Int. J. Theor. Phys. 52, 2573 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bennett, C. H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wooters, W. K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bouwmeester, D., Pan, J. W., Mattle, K., et al.: Experimental quantum teleportation. Nature 390, 575–579 (1997)

    Article  ADS  Google Scholar 

  5. Cai, X., Yu, X., Shi, L., et al.: Partially entangled states bridge in quantum teleportation. Front. Phys. 9, 646 (2014)

    Article  Google Scholar 

  6. Li, C., Li, X., Deng, F., et al.: Complete multiple round quantum dense coding with quantum logical network. CHINESE SCI. BULL. 52, 1162 (2007)

    Article  Google Scholar 

  7. Ban, M.: Quantum teleportation and quantum dense coding in a finite-dimensional Hilbert space. Int. J. Theor. Phys. 42, 1 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Wang, X., Qiu, L., Li, S., et al.: Relating quantum discord with the quantum dense coding capacity. J. Exp. Theor. Phys. 120, 9 (2015)

    Article  ADS  Google Scholar 

  9. Zbinden, H., Bechmann-Pasquinucci, H., Gisin, N., et al.: Quantum cryptography. Appl. Phys. B 67, 743 (1998)

    Article  ADS  Google Scholar 

  10. Molotkov, S. N.: The efficiency of repeaters based on the Einstein-Podolsky-Rosen effect for quantum cryptography in a damping channel. Jetp. Lett. 75, 210 (2002)

    Article  ADS  Google Scholar 

  11. Kak, S.: A three-stage quantum cryptography protocol. Found Phys. Lett. 19, 293 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lo, H. K.: Classical-communication cost in distributed quantum-information processing: A generalization of quantum-communication complexity. Phys. Rev. A 62, 012313 (2000)

    Article  ADS  Google Scholar 

  13. Pati, A. K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63, 014302 (2001)

    Article  ADS  Google Scholar 

  14. Bennett, C. H., Divincenzo, D. P., Shor, P. W., Smolin, J. A., Terhal, B. M., Wootters, W. K.: Remote state preparation. Phys. Rev. Lett. 87(7), 077902 (2001)

    Article  ADS  Google Scholar 

  15. Chen, X. B., Ma, S. Y., Su, Y., Zhang, R., Yang, Y. X.: Controlled remote state preparation of arbitrary two and three qubit states via the Brown state. Quantum Inf. Process. 11, 1653–1667 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Chen, Q. Q., Xia, Y., An, N. B.: Probabilistic joint remote preparation of a two-particle high-dimensional equatorial state. Opt. Commun. 284, 2617 (2011)

    Article  ADS  Google Scholar 

  17. Wang, Z. Y.: Highly efficient remote preparation of an arbitrary three-qubit state via a four-qubit cluster state and an EPR state. Quantum Inf. Process. 12(2), 1321–1334 (2013)

    Article  ADS  MATH  Google Scholar 

  18. Jiang, M., Dong, D.Y.: A recursive two-phase general protocol on deterministic remote preparation of a class of multi-qubit states. J. Phys. B At. Mol. Opt. Phys. 45, 205506 (2012)

    Article  ADS  Google Scholar 

  19. Zhan, Y. B.: Deterministic remote preparation of arbitrary two-and three-qubit states. EPL-Europhys. Lett. 98(4), 40005 (2012)

    Article  ADS  Google Scholar 

  20. Xia, Y., Song, J., Song, H. S.: Multiparty remote state preparation. Phys. B-At. Mol. Opt. J. 40(18), 3719–3724 (2007)

    Article  ADS  Google Scholar 

  21. An, N. B., Kim, J.: Collective remote state preparation. Quantum Inf. Process. 6(5), 1051–1066 (2008)

    Article  MATH  Google Scholar 

  22. Jiang, M., Dong, D. Y.: A recursive two-phase general protocol on deterministic remote preparation of a class of multi-qubit states. J. Phys. B: At. Mol. Opt. Phys. 45, 205506 (7pp) (2012)

    Article  ADS  Google Scholar 

  23. Peng, J. Y., Luo, M. X., Mo, Z. W.: Joint remote state preparation of arbitrary two-particle states via GHZ-type states. Quantum Inf. Process. 12, 2325 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Raussendorf, R., Briegel, H. J.: A one way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001)

    Article  ADS  Google Scholar 

  25. Li, D., Cao, C., Zhuo, L.: Teleportation of two-particle entangled state via cluster state. J. Commun. Theor. Phys. 47, 464–466 (2007)

    Article  ADS  Google Scholar 

  26. Paul, N., Menon, J. V., Karumanchi, S., et al.: Quantum tasks using six qubit cluster states. Quantum Inf. Process. 10, 619 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gerasimov, M. V., Dikova, Y. P., Yakovleva, O. I.: New experimental evidence on cluster-type vaporization of feldspars. Petrology 24, 49 (2016)

    Article  Google Scholar 

  28. Hou, K., Li, Y. B., Liu, G. H., Sheng, S. Q.: Joint remote preparation of an arbitrary two-qubit state via GHZ-type states. J. Phys. A: Math. Theor. 44, 255304 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Xu, H., Zhang, M., Guo, H., et al.: Tripartite probabilistic and controlled teleportation of an arbitrary single-qubit state via one-dimensional four-qubit cluster-type state. Int. J. Theor. Phys. 49, 2089 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Li, W., Zha, X., Qi, J.: Tripartite quantum controlled teleportation via seven-qubit cluster state. Int. J. Theor. Phys. 55, 3927 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Yi, X. J., Wang, J. M., Huang, G. Q.: Controlled dense coding with six-qubit cluster state. Int. J. Theor. Phys. 50, 364 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Liao, Y., Zhou, P., Qin, X., et al.: Efficient joint remote preparation of an arbitrary two-qubit state via cluster and cluster-type states. Quantum Inf. Process. 13, 615 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhan, Y. B., Hu, B. L., Ma, P. C.: Joint remote preparation of four-qubit cluster-type states. J. Phys. B 44, 095501 (2011)

    Article  ADS  Google Scholar 

  34. An, N. B., Bich, C. T., Van, D. N.: Joint remote preparation of four-qubit cluster-type states revisited. J. Phys. B-At. Mol. Opt. 44(13), 135506 (2011)

  35. Hou, K.: Joint remote preparation of four-qubit cluster-type states with multiparty. Quantum Inf. Process. 12(12), 3821–3833 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Yang, Y. Q., Zha, X. W., Yu, Y.: Asymmetric bidirectional controlled teleportation via seven-qubit cluster state. Int. J. Theor. Phys. (2016). doi:10.1007/s10773-016-3044-5

  37. Chen, Y.: Quantum information splitting of an arbitrary three-qubit state using a seven-qubit entangled state. Int. J. Theor. Phys. 53, 524 (2014)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (No. 61473199 and No. 61104002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, M., Jiang, M. Deterministic Joint Remote Preparation of an Arbitrary Sevenqubit Cluster-type State. Int J Theor Phys 56, 1875–1882 (2017). https://doi.org/10.1007/s10773-017-3332-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-017-3332-8

Keywords

Navigation