Skip to main content
Log in

Abstract

We consider one of the fundamental debates in performing the relativity theory, namely, the ether and the relativity points of view, in a way to aid the learning of the subjects. In addition, we present our views and prospects while describing the issues that being accessible to many physicists and allowing broader views. Also, we very briefly review the two almost recent observations of the Webb redshift and the ultra high energy cosmic rays, and the modified relativity models that have been presented to justify them, wherein we express that these justifications have not been performed via a single model with a single mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. 1 This point of view is a return to the Aristotle idea. Incidentally, this idea is related to the relational physics [3, 4], which means a physical system is in a way that positions and other properties of things have meanings just with respect to the other things. This point of view is a prelude to the Mach ideas, particularly the weak version of it.

  2. 2 The Aristotle point of view on space was asserted in his definition of place as the limit between the surrounding and the surrounded body [10], and also as the innermost motionless boundary of that which surrounds it [11, 12].

  3. 3 Also, the Lense-Thirring precession effect (see, e.g., Refs. [1820]), or actually the frame-dragging effect [21, 22], must be neglected.

  4. 4 Such a contraction was accounted in terms of the Lorentz electron theory [31]; however, it is believed that some other results predicted from his theory could not be found experimentally [24] and the theory has some philosophical deficit such that its basic assumptions are unverifiable [14].

  5. 5 However, nowadays, the discovery of the acceleration of the universe [4447] can be discussed as a possible way of investigating the contrary to such a claim.

  6. 6 Thus, the Newton first law is consistent with special relativity. However, for distinguishing the inertial frames from the rigid frames, instead of the existing context of the Newton first law, one can employ, e.g., the law of light propagation. In fact, the usual definition of rigid bodies cannot be applied in special relativity, although to be consistent with it, some new definitions have been stated. For instance, the characteristic of rigidity is assigned to a body as relative-rigidity that any length element of the body on the move remains invariant with respect to the comoving observer [50] or a body on the move somehow deforms continuously that each of its infinitesimal elements has just the Lorentz contraction with respect to the instantaneous rest observer [51].

  7. 7 His critical view on the STR has been explicitly expressed in the foreward to the ninth edition of his book [16].

  8. 8 Among the reviews on the Lorentz violation, Ref. [54] includes the theoretical approaches as well as the phenomenological analysis.

  9. 9 Meanwhile, for grasping more about the contents and points that led to the advent of the GTR; see Refs. [6670].

  10. 10 Principally in gravitational physics, energy itself acts as a source of gravity and is not capable of simply being thrown away, and also one cannot easily rescale the zero point of it [72, 73].

  11. 11 It had been thought that generally invariant field equations cannot uniquely determine the gravitational field generated by certain distributions of source masses, in contradiction with the requirement of physical causality [14, 15, 74, 75].

  12. 12 This is known as the point-coincidence discussion.

  13. 13 In this respect; see also Ref. [15] and references therein.

  14. 14 That is, the ether as a substance of some kind, and not a type of vacuum without any properties intrinsic to itself (e.g., the ether would have the property of ponderability, which is to say, it has the power to gravitate or to generate curvature).

  15. 15 By adopting that the ether gravitates only in the presence of matter.

  16. 16 Note that, in general, any relativistic gravitational equation, including the Einstein equations of the GTR, is needed to be non-linear, and hence, its number of independent solutions are not finite and the superposition principle is not also valid for it.

  17. 17 However in the Mach ideas, there is also no description about why the interaction should be velocity-independent, but acceleration-dependent, and or indeed, why there is such a distinction between unaccelerated and accelerated motion in the nature.

  18. 18 Incidentally, by this insertion, he also provided the possibility of having a static solution for the universe (that was thought to be so at that time), as an appropriate condition on the GTR.

  19. 19 Even a sufficiently small value of the cosmological constant can have very important effects on the evolution of the universe; and although the implications of this term are cosmological, the origin of it is probably to be found in the quantum theory rather than cosmology.

  20. 20 The Einstein equations are G μ ν =(8π G/c 4)T μ ν , where G μ ν is the Einstein tensor as a function of the metric and its derivatives, G is the Newtonian gravitational constant, T μ ν is the energy-momentum tensor and the lower case Greek indices run from zero to three. The Einstein equations plus the cosmological constant are G μ ν −Λg μ ν =(8π G/c 4)T μ ν , where g μ ν is the metric tensor and Λ is a constant.

  21. 21 Meanwhile and almost around the same time, non-static closed solutions of the GTR (corresponding to an expanding distribution of matter) were discovered, and also it was specified that the universe is not static, but rather is expanding in the large-scale (that was officially published a few years later [108]).

  22. 22 Incidentally, according to quantum theory, the vacuum has vacuum fluctuations and an energy tensor (zero-point energy) that the only form of it (being the same in all inertial frames) is a constant multiple of the metric, i.e. the same as the cosmological constant term. However, the calculations based on theories of elementary particles yield a value for the corresponding cosmological constant term to be orders of magnitude far larger than the observations allow. This discrepancy is known as the cosmological constant problem; see, e.g., Refs. [112117] and references therein.

  23. 23 This point of view seems not to be irrelevant with the strong version of the Mach principle.

  24. 24 For this subject; see, e.g., Ref. [185].

References

  1. Rindler, W.: Relativity: special, general and cosmological, 2nd Ed. Oxford University Press, Oxford (2006)

    MATH  Google Scholar 

  2. Newton, I.: Philosophiæ Naturalis Principia Mathematica, 1st Ed. Streater, London (1687). Final Ed. in English by: A. Motte, 1729, Revised by: A. Cajori, “Sir Isaac Newton’s Mathematical Principles of Natural Philosophy and His System of the World”, (University of California Press, Berkeley, 1962)

    MATH  Google Scholar 

  3. Michael, F.: Leibniz’s metaphysics of time and space. Springer, Heidelberg (2008)

    Google Scholar 

  4. Dean, R.: Symmetry, structure and spacetime. Elsevier, Oxford (2008)

    Google Scholar 

  5. Erlichson, E.: The Leibniz-Clarke controversy: Absolute versus relative space and time. Am. J. Phys. 35, 89 (1967)

    Article  ADS  Google Scholar 

  6. Čapek, M. (ed.): The concepts of space and time, their structure and their development. Boston Studies in The Philosophy of Science, vol. 74. Reidel Publishing Company, Boston (1976)

  7. Earman, J., Norton, J.: What price spacetime substantivalism? The hole story. British J. Phil. Sci. 38, 515 (1987)

    Article  MathSciNet  Google Scholar 

  8. Berkley, G. De Motu or The principle and nature of motion and the cause of the communication of motions (1721)

  9. Maxwell, J.C.: A dynamical theory of the electromagnetic field. Roy. Soc. 155, 459 (1865). This article accompanied a December 8, 1864 presentation by Maxwell to the Royal Society

    Google Scholar 

  10. Adler, I.: A new look at geometry. John Day Company, New York (1966)

    Google Scholar 

  11. Hardie, R.P., Gaye, R.K.: The Works of Aristotle, Vol. 2. Physica. Clarendon Press, Oxford (1930)

    Google Scholar 

  12. Aristotle: Physics, (Oxford World’s Classics), Edited by: D. Bostock, Translated by: R. Waterfield. Oxford University Press, Oxford (2008)

    Google Scholar 

  13. Mashhoon, B., Liu, H., Wesson, P.S.: Space-time-matter. In: Proceedings 7th Marcel Grossmann Meeting, pp 333–335, Stanford (1994)

  14. d’Inverno, R.: Introducing Einstein’s relativity. Clarendon Press, Oxford (1992)

    MATH  Google Scholar 

  15. Janssen, M.: Of pots and holes: Einstein’s bumpy road to general relativity. Ann. Phys. (Berlin) 14, 58 (2005). Supplement

    Article  ADS  Google Scholar 

  16. Mach, E.: La Meccanica nel suo Sviluppo Storico-Critico (Mechanics in Its Development Historical-Critical). Boringhieri, Torino (1977). Italian translation from the original 9th German Ed. of 1933 (1st Ed. 1883). Also published as “The Science of Mechanics: A Critical and Historical Account of Its Development”, (Open Court, Illinois, 1960)

    Google Scholar 

  17. Barbour, J., Pfister, H. (eds.): Mach’s principle: from Newton’s bucket to quantum gravity. Einstein Studies, vol. 6. Birkhäuser, Boston (1995)

  18. Lense, J., Thirring, H.: Über den Einfluss der Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie (About the influence of the self-rotation of cenral body to the movement of planets and moons according to Einstein’s theory of gravitation). Physik. Z. 19, 156 (1918)

    MATH  Google Scholar 

  19. Mashhoon, B., Hehl, F.W., Theiss, D.S.: On the gravitational effects of rotating masses: the Thirring-Lense papers. Gen. Rel. Grav. 16, 711 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  20. Ciufolini, I.: The 1995–99 measurements of the Lense-Thirring effect using laser-ranged satellites. Class. Quant. Grav. 17, 2369 (2000)

    Article  ADS  MATH  Google Scholar 

  21. Everitt, F., et al.: Gravity probe B: final results of a space experiment to test general relativity. Phys. Rev. Lett. 106, 221101 (2011)

    Article  ADS  Google Scholar 

  22. Iorio, L.: Some considerations on the present-day results for the detection of frame-dragging after the final outcome of GP-B. Europhys. Lett. 96, 30001 (2011)

    Article  ADS  Google Scholar 

  23. French, A.P.: Special relativity. W.W. Norton, New York (1966)

    Google Scholar 

  24. Resnick, R.: Introduction to special relativity. Wiley, New York (1968)

    Google Scholar 

  25. Michelson, A.A., Morley, E.W.: On the relative motion of the earth and the luminiferous ether. Am. J. Sci. 34, 333 (1887)

    Article  MATH  Google Scholar 

  26. Shankland, R.S., McCuskey, S.W., Leone, F.C., Kuerti, G.: New analysis of the interferometer observations of Dayton C. Miller. Rev. Mod. Phys. 27, 167 (1955)

    Article  ADS  Google Scholar 

  27. Shankland, R.S.: Michelson-Morley experiment. Am. J. Phys. 32, 16 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  28. Fitzgerald, F.: The ether and the earth’s atmosphere. Science 13, 390 (1889)

    ADS  Google Scholar 

  29. Lorentz, H.A: La théorie électromagnétique de Maxwell et son application aux corps mouvants (The electromagnetic theory of Maxwell and its application to moving bodies). Arch. Néerl. Sci. Ex. Nat. 25, 363 (1892)

    Google Scholar 

  30. Lorentz, H.A.: The relative motion of the earth and the aether. Zitt. Akad. V. Wet. 1, 74 (1892)

    Google Scholar 

  31. Lorentz, H.A.: The theory of electrons and its applications to the phenomena of light and radiatiant heat. Columbia University Press, New York (1909); Dover Publications, New York (1952)

    Google Scholar 

  32. Lorentz, H.A.: Electromagnetic phenomena in a system moving with any velocity less than that of light. Proc. Acad. Sci. Amsterdam 6, 809 (1904). Reprinted in: “The Principle of Relativity: A Collection of Original Memoirs on The Special and General Theory of Relativity”, by: H.A. Lorentz, A. Einstein, H. Minkowski and H. Weyl, Translated by: W. Perrett and G.B. Jeffery, (Dover Publications, New York, 1952), pp. 9–34

    Google Scholar 

  33. Kennedy, R.J., Thorndike, E.M.: Experimental establishment of the relativity of time. Phys. Rev. 42, 400 (1932)

    Article  ADS  MATH  Google Scholar 

  34. Bradley, J.: New discovered motion of the fixed stars. Phil. Trans. Roy. Soc. 35, 637 (1727)

    Article  Google Scholar 

  35. Stewart, A.B.: The discovery of stellar aberration. Sci. Am. 210, 100 (1964)

    Article  Google Scholar 

  36. Michelson, A.A., Morley, E.W.: Influence of motion of the medium on the velocity of light. Am. J. Sci. 31, 377 (1886)

    Article  Google Scholar 

  37. Bilger, H.R., Stowell, W.K.: Light drag in a ring laser: An improved determination of the drag coefficient. Phys. Rev. A 16, 313 (1977)

    Article  ADS  Google Scholar 

  38. Sanders, G.A., Ezekiel, S.: Measurement of Fresnel drag in moving media using a ring resonator technique. J. Opt. Soc. Am. B 5, 674 (1988)

    Article  ADS  Google Scholar 

  39. Ives, H.E.: Historical note on the rate of a moving atomic clock. J. Opt. Soc. Am. 37, 810 (1947)

    Article  ADS  Google Scholar 

  40. Whittaker, E.T.: A history of the theories of Æther and electricity: the modern theories 1900–1926. Nelson, London (1953); Harper, New York (1960); Humanities Press, London (1973)

    Google Scholar 

  41. Holton, G.: On the origins of the special theory of relativity. Am. J. Phys. 28, 627 (1960)

    Article  ADS  MathSciNet  Google Scholar 

  42. Rindler, W.: Einstein’s priority in recognizing time dilation physically. Am. J. Phys. 38, 1111 (1970)

    Article  ADS  Google Scholar 

  43. Erlichson, H.: The rod contraction-clock retardation ether theory and the special theory of relativity. Am. J. Phys. 41, 1068 (1973)

    Article  ADS  Google Scholar 

  44. Riess, A.G., et al.: Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  45. Perlmutter, S., et al.: The Supernova Cosmology Project. Measurements of Omega and Lambda from 42 high-redshift supernovae. Astrophys. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  46. Riess, A.G., et al.: BV RI light curves for 22 type Ia supernovae. Astron. J. 117, 707 (1999)

    Article  ADS  Google Scholar 

  47. Riess, A.G., et al.: Type Ia supernova discoveries at z>1 from the Hubble space telescope: Evidence for past deceleration and constraints on dark energy evolution. Astrophys. J. 607, 665 (2004)

    Article  ADS  Google Scholar 

  48. Einstein, A.: Zur Elektrodynamik bewegter Körper. Ann. Phys. (Berlin) 322, 891 (1905). Its English version: “On the electrodynamics of moving bodies”, In: “The Principle of Relativity: A Collection of Original Memoirs on The Special and General Theory of Relativity”, by H.A. Lorentz, A.Einstein, H. Minkowski and H. Weyl, Translated by: W. Perrett and G.B. Jeffery, (Dover Publications, New York, 1952), pp. 35–65

    Article  ADS  Google Scholar 

  49. Minkowski, H.: Raum und Zeit. Jber. Deutsch. Math.-Verein. 18, 75 (1909). Address delivered at the 80th Assembly of German Natural Scientists and Physicians, Cologne, Sept. 21, 1908. Its English version: “Space and time”, In: “The Principle of Relativity: A Collection of Original Memoirs on The Special and General Theory of Relativity”, by H.A. Lorentz, A. Einstein, H. Minkowski and H. Weyl, Translated by: W. Perrett and G.B. Jeffery, (Dover Publications, New York, 1952), pp. 73–91

    MATH  Google Scholar 

  50. Born, M.: Die Theorie des starren Elektrons in der Kinematik des Relativitätsprinzips (The theory of rigid electron in the kinematics of principle of relativity). Ann. Phys. (Berlin) 335, 1 (1909)

    Article  ADS  MATH  Google Scholar 

  51. Ehrenfest, P.: Gleichförmige Rotation starrer Körper und Relativitätstheorie (Uniform rotation of rigid bodies and theory of relativity.) Physik. Z. 10, 918 (1909)

    MATH  Google Scholar 

  52. Petkov, V.: Relativity and the nature of spacetime. Springer, Berlin (2005)

    MATH  Google Scholar 

  53. Iorio, A.: Three questions on Lorentz violation. J. Phys. Conf. Ser. 67, 012008 (2007)

    Article  ADS  Google Scholar 

  54. Mattingly, D.: Modern tests of Lorentz invariance. Living Rev. Rel. 8, 5 (2005)

    MATH  Google Scholar 

  55. Shinozaki, K., et al.: AGASA Collaboration. AGASA results. Nucl. Phys. B 136, 18 (2004)

    Article  Google Scholar 

  56. Stecker, F.W., Malkan, M.A., Scully, S.T.: Intergalactic photon spectra from the far-IR to the UV Lyman limit for 0<z<6 and the optical depth of the universe to high-energy gamma rays. Astrophys. J. 648, 774 (2006)

    Article  ADS  Google Scholar 

  57. Abbasi, R.U., et al.: First observation of the Greisen-Zatsepin-Kuzmin suppression. Phys. Rev. Lett. 100, 101101 (2008)

    Article  ADS  Google Scholar 

  58. DroŻdŻyński, J.: Evidence for an invalidity of the principle of relativity. J. Mod. Phys. 2, 1247 (2011)

    Article  Google Scholar 

  59. Sela, O., Tamir, B., Dolev, S., Elitzur, A.C.: Can special relativity be derived from Galilean mechanics alone? Found. Phys. 39, 499 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. Coleman, S., Glashow, S.L.: High-energy tests of Lorentz invariance. Phys. Rev. D 59, 116008 (1999)

    Article  ADS  Google Scholar 

  61. Einstein, A.: Die Feldgleichungen der Gravitation (The field equations of gravitation). Preuss. Akad. Wiss. Berlin Sitz. 17, 844 (1915)

    MATH  Google Scholar 

  62. Einstein, A.: Die Grundlage der allgemeinen Relativitätstheorie. Ann. Phys. (Berlin) 354, 769 (1916). Its English version: “The foundation of the general theory of relativity”, In: “The Principle of Relativity: A Collection of Original Memoirs on The Special and General Theory of Relativity”, by: H.A. Lorentz, A. Einstein, H. Minkowski and H. Weyl, Translated by: W. Perrett and G.B. Jeffery, (Dover Publications, New York, 1952), pp. 109–164

    Article  ADS  MATH  Google Scholar 

  63. Lichtenegger, H., Mashhoon, B.: Mach’s principle. In: Iorio, L. (ed.) The measurment of gravitomagnetism: a challenging enterprise, pp 13–27. NOVA Science, Hauppage, New York (2005). arXiv:physics/0407078

  64. Ciufolini, I., Wheeler, J.A.: Gravitation and inertia. Princeton University Press, Princeton (1995)

    MATH  Google Scholar 

  65. Straumann, N.: General relativity with applications to astrophysics. Springer, Berlin (2004)

    MATH  Google Scholar 

  66. Mehra, J.: Einstein, Hilbert, and the theory of gravitation. Reidel Publishing Company, Holland (1974)

    Book  MATH  Google Scholar 

  67. Pais, A.: Subtle is the Lord, the science and the life of Albert Einstein. Oxford University Press, Oxford (1982)

    Google Scholar 

  68. Stachel, J.: Einstein’s struggle with general covariance, 1912–1915. Presented at General Relativity and Gravitation 9th, 1980 at Jena, Germany; Reprinted as “Einstein’s search for general covariance, 1912–1915”. In: Howard, D., Stachel, J. (eds.) Einstein and The History of General Relativity, based on the Proceedings of May 1986, Osgood Hill Conference, Massachusetts, pp 63–100. The Center for Einstein Studies, Boston University (1989)

  69. Stachel, J.: What a physicist can learn from the discovery of general relativity. In: Ruffini, R. (ed.) Proceedings of The Fourth Marcel Grossmann Meeting on General Relativity, pp 1857–1862. North-Holland, Amsterdam (1986)

  70. Norton, J.: How Einstein found his field equations, 1912–1915. In: Howard, D., Stachel, J. (eds.) Einstein and The History of General Relativity, based on the Proceedings of May 1986, Osgood Hill Conference, Massachusetts, pp. 101–159. The Center for Einstein Studies, Boston University (1989). It is reprinted from “Historical Studies in The Physical Sciences”, Vol. 14, Part 2, Edited by: J.L. Heilbron, (The Regents of The University of California, Berkeley, 1984), pp. 253–316

  71. Synge, J.L.: Relativity: the general theory. North-Holland, Amsterdam (1960)

    MATH  Google Scholar 

  72. Birrell, N.D., Davies, P.C.W.: Quantum fields in curved space. Cambridge University Press, Cambridge (1982)

    Book  MATH  Google Scholar 

  73. Buchbinder, I.L., Odintsov, S.D., Shapiro, I.L.: Effective action in quantum gravity. Institute of Physics Publishing, Bristol (1992)

    Google Scholar 

  74. Einstein, A., Grossmann, M.: Entwurf einer verallgemeinerten Relativitätstheorie und einer Theorie der Gravitation (Draft of a generalized relativity theory and a theory of gravitation). Z. Math. Phys. 62, 225 (1913)

    MATH  Google Scholar 

  75. Einstein, A., Grossmann, M.: Kovarianzeigenschaften der Feldgleichungen der auf die verallgemeinerte Relativitätstheorie gegründeten Gravitationstheorie (Covariance properties of the field equations of the gravitational theory based on generalized relativity). Z. Math. Phys. 63, 215 (1914)

    MATH  Google Scholar 

  76. A. Einstein wrote to: P. Ehrenfest, on 26th December, 1915, EA 9–363

  77. A. Einstein wrote to: M. Besso, on 3rd January, 1916, In: “Albert Einstein, Michele Besso Correspondence 1903–1955”, Edited by: P. Speziali, (Hermann, Paris, 1972), pp. 63–64

  78. Einstein, A.: Relativity and the problem of space (1952), Appendix 5. In: Relativity, The Special and The General Theory: A Popular Exposition, Translated by: R.W. Lawson, Methuen, London, 15th Ed., pp 135–157 (1954)

  79. Eddington, A.S.: ‘Space’ or ‘Æther’? Nature 107, 201 (1921)

    Article  ADS  MATH  Google Scholar 

  80. Einstein, A.: Äther und Relativitätstheorie (Ether and Relativity Theory), (Springer, Berlin, 1920), reprinted as “Sidelights on Relativity”. Dover Publications, New York (1983)

    Google Scholar 

  81. Trautman, A: Comparison of Newtonian and relativistic theories of space-time. In: Hoffmann, B. (ed.) Perspectives in Geometry and Relativity, pp 413–425. Indiana University Press, Bloomington (1966)

  82. Whittaker, E.T.: A History of The Theories of Æther and Electricity: The Classical Theories, 2nd Ed. Nelson, London (1951); Tomash Publishers, New York (1987)

    Google Scholar 

  83. Schaffner, K.F.: Nineteenth-Century Æther Theories. Pergamon Press, New York (1972)

    Google Scholar 

  84. Dupré, M.J., Tipler, F.J.: General relativity as an æther theory. Int. J. Mod. Phys. D 21, 1250011 (2012)

    Article  ADS  MATH  Google Scholar 

  85. Gautreau, R.: Newton’s absolute time and space in general relativity. Am. J. Phys. 68, 350 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  86. Savickas, D.: General relativity exactly described in terms of Newton’s laws within curved geometries. Int. J. Mod. Phys. D 23, 1430018 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  87. Salam, A.: Gauge unification of fundamental forces. Rev. Mod. Phys. 52, 525 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  88. Wesson, P.S., Ponce de Leon, J.: Kaluza-Klein equations, Einstein’s equations, and an effective energy-momentum tensor. J. Math. Phys. 33, 3883 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  89. Romero, C., Tavakol, R., Zalaletdinov, R.: The embedding of general relativity in five dimensions. Gen. Rel. Grav. 28, 365 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  90. Overduin, J.M., Wesson, P.S.: Kaluza-Klein gravity. Phys. Rep. 283, 303 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  91. Wesson, P.S.: Space-Time-Matter: Modern Kaluza-Klein Theory. World Scientific, Singapore (1999)

    Book  MATH  Google Scholar 

  92. Wesson, P.S.: Five-dimensional physics: classical and quantum consequences of Kaluza-Klein cosmology. World Scientific, Singapore (2006)

    Book  MATH  Google Scholar 

  93. Bahrehbakhsh, A.F., Farhoudi, M., Shojaie, H.: FRW cosmology from five dimensional vacuum Brans-Dicke theory. Gen. Rel. Grav. 43, 847 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  94. Rasouli, S.M.M., Farhoudi, M., Sepangi, H.R.: Anisotropic cosmological model in modified Brans-Dicke theory. Class. Quant. Grav. 28, 155004 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  95. Bahrehbakhsh, A.F., Farhoudi, M., Vakili, H.: Dark energy from fifth dimensional Brans-Dicke theory. Int. J. Mod. Phys. D 22, 1350070 (2013)

    Article  ADS  MATH  Google Scholar 

  96. Rasouli, S.M.M., Farhoudi, M., Moniz, P.V.: Modified Brans-Dicke theory in arbitrary dimensions. Class. Quant. Grav. 31, 115002 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  97. Harko, T.: Modified gravity with arbitrary coupling between matter and geometry. Phys. Lett. B 669, 376 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  98. Harko, T., Lobo, F.S.N., Nojiri, S., Odintsov, S.D.: f(R,T) gravity. Phys. Rev. D 84, 024020 (2011)

    Article  ADS  Google Scholar 

  99. Bisabr, Y.: Modified gravity with a nonminimal gravitational coupling to matter. Phys. Rev. D 86, 044025 (2012)

    Article  ADS  Google Scholar 

  100. Jamil, M., Momeni, D., Muhammad, R., Ratbay, M.: Reconstruction of some cosmological models in f(R,T) gravity. Eur. Phys. J. C 72, 1999 (2012)

    Article  ADS  Google Scholar 

  101. Alvarenga, F.G., de la Cruz-Dombriz, A., Houndjo, M.J.S., Rodrigues, M.E., Saez-Gomez, D.: Dynamics of scalar perturbations in f(R,T) gravity. Phys. Rev. D 87, 103526 (2013)

    Article  ADS  Google Scholar 

  102. Haghani, Z., Harko, T., Lobo, F.S.N., Sepangi, H.R., Shahidi, S.: Further matters in space-time geometry: f(R,T,R μ ν T μν) gravity. Phys. Rev. D 88, 044023 (2013)

    Article  ADS  Google Scholar 

  103. Shabani, H., Farhoudi, M.: f(R,T) cosmological models in phase-space. Phys. Rev. D 88, 044048 (2013)

    Article  ADS  Google Scholar 

  104. Shabani, H., Farhoudi, M.: Cosmological and solar system consequences of f(R,T) gravity models. Phys. Rev. D 90, 044031 (2014)

    Article  ADS  Google Scholar 

  105. Zaregonbadi, R., Farhoudi, M.: Late time acceleration from matter-curvature coupling, submitted to journal

  106. Einstein, A.: Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie. Preuss. Akad. Wiss. Berlin, Sitz., 142 (1917). Its English version: “Cosmological considerations on the general theory of relativity”, In: “The Principle of Relativity: A Collection of Original Memoirs on The Special and General Theory of Relativity”, by: H.A. Lorentz, A. Einstein, H. Minkowski and H. Weyl, Translated by: W. Perrett and G.B. Jeffery, (Dover Publications, New York, 1952), pp. 175–188

  107. de Sitter, W.: On the curvature of space. Proc. Kon. Ned. Acad. Wet. 20, 229 (1918)

    ADS  Google Scholar 

  108. Hubble, E.P.: A relation between distance and radial velocity among extragalactic nebulae. Proc. Natl. Acad. Sci. USA 15, 169 (1929)

    Article  ADS  MATH  Google Scholar 

  109. Gamow, G.: My world line, an informal autobiography. Viking, New York (1970)

    Google Scholar 

  110. A. Einstein wrote to: F. Pirani, 1954, EA 17–448

  111. Namavarian, N., Farhoudi, M.: Cosmological constant implementing Mach principle in general relativity, submitted to journal

  112. Weinberg, S.: The cosmological constant problem. Rev. Mod. Phys. 61, 1 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  113. Carroll, S.M.: The cosmological constant. Living. Rev. Rel. 4, 1 (2001)

    MATH  Google Scholar 

  114. Sahni, V.: The cosmological constant problem and quintessence. Class. Quant. Grav. 19, 3435 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  115. Nobbenhuis, S.: Categorizing different approaches to the cosmological constant problem. Found. Phys. 36, 613 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  116. Padmanabhan, H., Padmanabhan, T.: CosMIn: The solution to the cosmological constant problem. Int. J. Mod. Phys. D 22, 1342001 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  117. Bernard, D., LeClair, A.: Scrutinizing the cosmological constant problem and a possible resolution. Phys. Rev. D 87, 063010 (2013)

    Article  ADS  Google Scholar 

  118. Weinberg, S.: Cosmology. Oxford University Press, Oxford (2008)

    MATH  Google Scholar 

  119. Barrow, J.D., Shaw, D.J.: The value of the cosmological constant. Gen. Rel. Grav. 43, 2555 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  120. Peebles, P.J.E., Ratra, B.: The cosmological constant and dark energy. Rev. Mod. Phys. 75, 559 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  121. Padmanabhan, T.: Cosmological constant–the weight of the vacuum. Phys. Rep. 380, 235 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  122. Polarski, D.: Dark energy: Current issues. Ann. Phys. (Berlin) 15, 342 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  123. Copeland, E.J., Sami, M., Tsujikawa, S.: Dynamics of dark energy. Int. J. Mod. Phys. D 15, 1753 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  124. Durrer, R., Maartens, R.: Dark energy and dark gravity: Theory overview. Gen. Rel. Grav. 40, 301 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  125. Bamba, K., Capozziello, S., Nojiri, S., Odintsov, S.D.: Dark energy cosmology: the equivalent description via different theoretical models and cosmography tests. Astrophys. Space Sci. 342, 155 (2012)

    Article  ADS  MATH  Google Scholar 

  126. Ade, P.A.R., et al.: Planck Collaboration. Planck 2013 results. XVI. Cosmological parameters. Astron. Astrophys. 571, A16 (2014)

  127. Ade, P.A.R., et al.: Planck Collaboration. Planck 2015 results. XIII. Cosmological parameters. arXiv:1502.01589

  128. Farhoudi, M.: On higher order gravities, their analogy to GR, and dimensional dependent version of Duff’s trace anomaly relation. Gen. Rel. Grav. 38, 1261 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  129. Bertonea, G., Hooperb, D., Silk, J.: Particle dark matter: Evidence, candidates and constraints. Phys. Rep. 405, 279 (2005)

    Article  ADS  Google Scholar 

  130. Silk, J.: Dark matter and galaxy formation. Ann. Phys. (Berlin) 15, 75 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  131. Feng, J.L.: Dark matter candidates from particle physics and methods of detection. Annu. Rev. Astron. Astrophys. 48, 495 (2010)

    Article  ADS  Google Scholar 

  132. Bergström, L.: Dark matter evidence, particle physics candidates and detection methods. Ann. Phys. (Berlin) 524, 479 (2012)

    Article  ADS  Google Scholar 

  133. Frenk, C.S., White, S.D.M.: Dark matter and cosmic structure. Ann. Phys. (Berlin) 524, 507 (2012)

    Article  ADS  Google Scholar 

  134. Farhoudi, M: Classical trace anomaly. Int. J. Mod. Phys. D 14, 1233 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  135. Brans, C., Dicke, R.H.: Mach’s principle and a relativistic theory of gravitation. Phys. Rev. 124, 925 (1961)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  136. Dicke, R.H.: Mach’s principle and invariance under transformation of units. Phys. Rev. 125, 2163 (1962)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  137. Fujii, Y., Maeda, K.: The scalar-tensor theory of gravitation. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  138. Farajollahi, H., Farhoudi, M., Shojaie, H.: On dynamics of Brans-Dicke theory of gravitation. Int. J. Theor. Phys. 49, 2558 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  139. Faraoni, V.: Cosmology in scalar tensor gravity. Kluiwer Academic Publishers, Netherlands (2004)

    Book  MATH  Google Scholar 

  140. Capozziello, S., Faraoni, V.: Beyond Einstein gravity: a survey of gravitational theories for cosmology and astrophysics. Springer, Heidelberg (2011)

    MATH  Google Scholar 

  141. Khoury, J., Weltman, A.: Chameleon cosmology. Phys. Rev. D 69, 044026 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  142. Brax, P., Burrage, C., Davis, A.-C., Seery, D., Weltman, A.: Higgs production as a probe of chameleon dark energy. Phys. Rev. D 81, 103524 (2010)

    Article  ADS  Google Scholar 

  143. Farajollahi, H., Farhoudi, M., Salehi, A., Shojaie, H.: Chameleonic generalized Brans-Dicke model and late-time acceleration. Astrophys. Space Sci. 337, 415 (2012)

    Article  ADS  MATH  Google Scholar 

  144. Saba, N., Farhoudi, M.: Chameleonic inflation in the light of Planck 2015, work in progress

  145. Jacobson, T., Mattingly, D.: Gravity with a dynamical preferred frame. Phys. Rev. D 64, 024028 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  146. Eling, C., Jacobson, T., Mattingly, D.: Einstein-æther theory. arXiv:http://arxiv.orr/abs/gr-qc/0410001

  147. Jacobson, T.: Einstein-æther gravity: a status report. PoS QG-Ph, 020 (2007). arXiv:0801.1547

  148. Barrow, J.D.: Some inflationary Einstein-aether cosmologies. Phys. Rev. D 85, 047503 (2012)

  149. Wei, H., Yan, X.-P., Zhou, Y.-N.: Cosmological evolution of Einstein-aether models with power-law-like potential. Gen. Rel. Grav. 46, 1719 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  150. Haghani, Z., Harko, T., Sepangi, H.R., Shahidi, S.: Scalar Einstein-aether theory. arXiv:1404.7689

  151. Furtado, C., Nascimento, J.R., Petrov, A.Y., Santos, A.F.: The æther-modified gravity and the Gödel metric. arXiv:1109.5654

  152. The Timaeus of Plato, Edited with Introduction and Notes by: R.D. Archer-Hind, (Macmillan, London, 1888)

  153. Plato: Timaeus, Translated by: B. Jowett. Echo Library, United Kingdom (2006)

    Google Scholar 

  154. Webb, J.K., et al.: A search for time variation of the fine structure constant. Phys. Rev. Lett. 82, 884 (1999)

    Article  ADS  Google Scholar 

  155. Murphy, M.T., et al.: Possible evidence for a variable fine structure constant from QSO absorption lines: Motivations, analysis and results. Mon. Not. Roy. Astron. Soc. 327, 1208 (2001)

    Article  ADS  Google Scholar 

  156. Albert, J., et al.: Probing quantum gravity using photons from a are of the active galactic nucleus Markarian 501 observed by the MAGIC telescope. Phys. Lett. B 668, 253 (2008). [MAGIC Collaboration]

    Article  ADS  Google Scholar 

  157. Barrow, J.D., Magueijo, J.: Varying– α theories and solutions to the cosmological problems. Phys. Lett. B 443, 104 (1998)

    Article  ADS  Google Scholar 

  158. Sandvik, H.B., Barrow, J.D., Magueijo, J.: A simple varying–alpha cosmology. Phys. Rev. Lett. 88, 031302 (2002)

    Article  ADS  Google Scholar 

  159. Barrow, J.D., Magueijo, J.: Solutions to the quasi-flatness and quasi-lambda problems. Phys. Lett. B 447, 246 (1998)

    Article  ADS  Google Scholar 

  160. Clayton, M.A., Moffat, J.W.: Dynamical mechanism for varying light velocity as a solution to cosmological problem. Phys. Lett. B 480, 263 (1998)

    Google Scholar 

  161. Albrecht, A., Magueijo, J.: A time varying speed of light as a solution to cosmological puzzles. Phys. Rev. D 59, 043516 (1999)

    Article  ADS  Google Scholar 

  162. Magueijo, J.: New varying speed of light theories. Rep. Prog. Phys. 66, 2025 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  163. Shojaie, H., Farhoudi, M.: A cosmology with variable c. Can. J. Phys. 84, 933 (2006)

    Article  ADS  Google Scholar 

  164. Shojaie, H., Farhoudi, M.: A varying-c cosmology. Can. J. Phys. 85, 1395 (2007)

    Article  ADS  Google Scholar 

  165. Magueijo, J., Barrow, J.D., Sandvik, H.B.: Is it e or is it c? Experimental tests of varying alpha. Phys. Lett. B 549, 284 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  166. Castorina, P., Zappala, D.: Noncommutative electrodynamics and ultra high energy gamma rays. Europhys. Lett. 64, 641 (2003)

    Article  ADS  Google Scholar 

  167. Horvat, R., Kekez, D., Schupp, P., Trampeti, J., You, J.: Photon-neutrino interaction in 𝜃–exact covariant noncommutative field theory. Phys. Rev. D 84, 045004 (2011)

    Article  ADS  Google Scholar 

  168. Amelino-Camelia, G.: Relativity in space-times with short-distance structure governed by an observer-independent (Planckian) length scale. Int. J. Mod. Phys. D 11, 35 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  169. Magueijo, J., Smolin, L.: Lorentz invariance with an invariant energy scale. Phys. Rev. Lett. 88, 190403 (2002)

    Article  ADS  Google Scholar 

  170. Kowalski-Glikman, J., Nowak, S.: Non-commutative space-time of doubly special relativity theories. Int. J. Mod. Phys. D 12, 299 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  171. Guo, H.-Y., Huang, C.-G., Xu, Z., Zhou, B.: On de Sitter invariant special relativity and cosmological constant as origin of inertia. Mod. Phys. Lett. A 19, 1701 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  172. Agostini, A., Amelino-Camelia, G., D’Andrea, F.: Hopf-algebra description of noncommutative-spacetime symmetries. Int. J. Mod. Phys. A 19, 5187 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  173. Guo, H.-Y., Wu, H.-T., Zhou, B.: The principle of relativity and the special relativity triple. Phys. Lett. B 670, 437 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  174. Amelino-Camelia, G.: Doubly-special relativity: Facts, myths and some key open issues. Symmetry 2, 230 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  175. Alexander, S.: On the varying speed of light in a brane-induced FRW universe. J. High Energy Phys. 0011, 017 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  176. Drummond, I.T., Hathrell, S.J.: QED vacuum polarization in a background gravitational field and its effect on the velocity of photons. Phys. Rev. D 22, 343 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  177. Clayton, M.A., Moffat, J.W.: Dynamical mechanism for varying light velocity as a solution to cosmological problems. Phys. Lett. B 460, 263 (1999)

    Article  ADS  Google Scholar 

  178. Clayton, M.A., Moffat, J.W.: Scalar-tensor gravity theory for dynamical light velocity. Phys. Lett. B 477, 269 (2000)

    Article  ADS  Google Scholar 

  179. Magueijo, J.: Bimetric varying speed of light theories and primordial fluctuations. Phys. Rev. D 79, 043525 (2009)

    Article  ADS  Google Scholar 

  180. Finkbeiner, D., Davis, M., Schlegel, D.: Detection of a far IR excess with DIRBE at 60 and 100 microns. Astrophys. J. 544, 81 (2000)

    Article  ADS  Google Scholar 

  181. Mazin, D., Raue, M.: New limits on the density of the extragalactic background light in the optical to the far infrared from the spectra of all known TeV blazars. Astron. Astrophys. 471, 439 (2007)

    Article  ADS  Google Scholar 

  182. Penzias, A.A., Wilson, R.H.: A measurement of excess antenna temperature at 4080 Mc/s. Astrophys. J. 142, 419 (1965)

    Article  ADS  Google Scholar 

  183. Greisen, K.: End to the cosmic-ray spectrum. Phys. Rev. Lett. 16, 748 (1966)

    Article  ADS  Google Scholar 

  184. Zatsepin, G.T., Kuzmin, V.A.: Upper limit of the spectrum of cosmic rays. J. Exp. Theor. Phys. Lett. 4, 78 (1966)

    Google Scholar 

  185. Majid, S.: Foundations of Quantum Group Theory. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  186. Fock, V.A.: The Theory of Space-Time and Gravitation. Pergamon Press, New York (1964)

    MATH  Google Scholar 

  187. Hossenfelder, S.: The box-problem in deformed special relativity. arXiv:0912.0090

  188. Scully, S.T., Stecker, F.W.: Lorentz invariance violation and the observed spectrum of ultrahigh energy cosmic rays. Astropart. Phys. 31, 220 (2009)

    Article  ADS  Google Scholar 

  189. Yousefian, M., Farhoudi, M.: Justification of Webb’s redshift and ultra high energy cosmic rays via an ether model, work in progress

Download references

Acknowledgments

We thank the Research Office of Shahid Beheshti University for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehrdad Farhoudi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farhoudi, M., Yousefian, M. Ether and Relativity. Int J Theor Phys 55, 2436–2454 (2016). https://doi.org/10.1007/s10773-015-2881-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-015-2881-y

Keywords

Navigation